首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 188 毫秒
1.
A novel isolate, designated 6408J-67T, was isolated from an air sample collected from Jeju Island, Republic of Korea. Its phenotypic, genotypic, and chemotaxonomic properties were compared with those of members of the family Microbacteriaceae. The Gram-positive, aerobic, motile rod formed light yellow, smooth, circular and convex colonies. Optimal growth occurred at 30°C and pH 7.0. 16S rRNA gene sequence data showed that the isolate was a novel member of the family Microbacteriaceae, with the highest sequence similarity (97.4%) to Labedella gwakjiensis KSW2-17T and less (<97%) sequence similarity with other taxa. The major cellular fatty acids (>10% of the total) were anteiso-C15:0, iso-C14:0, and iso-C16:0. The strain also contained MK-13, MK-12, and MK-14 as the major menaquinones, as well as diphosphatidylglycerol, phosphatidylglycerol, and two unknown glycolipids. Its peptidoglycan structure was B1β with 2,4-diaminobutyric acid as a diamino acid. Mycolic acids were absent. The DNA G+C content was 68.3 mol%. Based on these phenotypic and genotypic findings, strain 6408J-67T represents a novel species of a new genus within the family Microbacteriaceae, for which the name Diaminobutyricimonas aerilata gen. nov., sp. nov. is proposed. The type strain is 6408J-67T (=KACC 15518T =NBRC 108726T).  相似文献   

2.
A novel actinobacterium, designated strain MSW-19T, was isolated from a seawater sample in Republic of Korea. Cells were aerobic, Gram-positive, non-endospore-forming, and non-motile cocci. Colonies were circular, convex, opaque, and vivid yellow in colour. A phylogenetic tree based on 16S rRNA gene sequences exhibited that the organism formed a distinct clade within the radius encompassing representatives of the family Propionibacteriaceae. The phylogenetic neighbors were the type strains of the genera Friedmanniella, Microlunatus, Micropruina, Propionicicella, and Propionicimonas. Levels of 16S rRNA gene sequence similarity between the isolate and members of the family were less than 95.3%. The cell wall peptidoglycan of the organism contained LL-diaminopimelic acid as the diagnostic diamino acid. The isolate contained MK-9(H4) as the predominant menaquinone, ai-C15:0 as the major fatty acid and polar lipids including phosphatidylglycerol, phosphatidylethanolamine, and an unknown phospholipid. The G+C content of the DNA was 69.6 mol%. On the basis of the phenotypic and phylogenetic data presented here, the isolate is considered to represent a novel genus and species in the family Propionibacteriaceae, for which the name Ponticoccus gilvus gen. nov., sp. nov. is proposed. The type strain is strain MSW-19T (= KCTC 19476T= DSM 21351T).  相似文献   

3.
Abstract In forested stream ecosystems of the north and eastern United States, larvae of the aquatic crane fly Tipula abdominalis are important shredders of leaf litter detritus. T. abdominalis larvae harbor a dense and diverse microbial community in their hindgut that may aide in the degradation of lignocellulose. In this study, the activities of cellulolytic and hemicellulolytic enzymes were demonstrated from hindgut extracts and from bacterial isolates using model sugar substrates. One of the bacterial isolates was further characterized as a member of the family Microbacteriaceae. Taxonomic position of the isolate within this family was determined by a polyphasic approach, as is commonly employed for the separation of genera within the family Microbacteriaceae. The bacterial isolate is Gram-type positive, motile, non-sporulating, and rod-shaped. The G + C content of the DNA is 64.9 mol%. The cell wall contains B2γ type peptidoglycan, D- and L-diaminobutyric acid as the diamino acid, and rhamnose as the predominant sugar. The predominant fatty acids are 12-methyltetradecanoic acid (ai-C15:0) and 14-methylhexadecanoic acid (ai-C17:0). The isolate forms a distinct lineage within the family Microbacteriaceae, as determined by 16S rRNA sequence analysis. We propose the name Crocebacterium ilecola gen. nov., sp. nov., to accommodate this bacterial isolate. The type species is T202T (ATCC BAA-1359; GenBank Accession DQ826511).  相似文献   

4.
Two strains of sulfate-reducing bacteria (J.5.4.2-L4.2.8T and J.3.6.1-H7) were isolated from a pyrite-forming enrichment culture and were compared phylogenetically and physiologically to the closest related type strain Desulfovibrio sulfodismutans DSM 3696T. The isolated strains were vibrio-shaped, motile rods that stained Gram-negative. Growth occurred from 15 to 37 °C and within a pH range of 6.5–8.5. Both strains used sulfate, thiosulfate, sulfite, and dimethyl sulfoxide (DMSO) as electron acceptor when grown with lactate. Lactate was incompletely oxidized to acetate. Formate and H2 were used as electron donor in the presence of acetate. Dismutation of thiosulfate and pyrosulfite was observed. The two new isolates differed from D. sulfodismutans by the utilization of DMSO as electron acceptor, 82% genome-wide average nucleotide identity (ANI) and 32% digital DNA-DNA hybridization (dDDH), thus representing a novel species. The type strain of the type species Desulfovibrio desulfuricans Essex6T revealed merely 88% 16S rRNA gene identity and 49% genome-wide average amino acid identity (AAI) to the new isolates as well as to D. sulfodismutans. Furthermore, the dominance of menaquinone MK-7 over MK-6 and the dominance of ai-C15:0 fatty acids were observed not only in the two new isolated strains but also in D. sulfodismutans. Therefore, the definition of a new genus is indicated for which the name Desulfolutivibrio is proposed. We propose for strains J.5.4.2-L4.2.8T and J.3.6.1-H7 the name Desulfolutivibrio sulfoxidireducens gen. nov. sp. nov. with strain J.5.4.2-L4.2.8T defined as type strain. In addition, we propose the reclassification of Desulfovibrio sulfodismutans as Desulfolutivibrio sulfodismutans comb. nov.  相似文献   

5.
A bacterial strain, designated JS5-2T, was isolated from soil collected from Jeju Island, Republic of Korea. The cells of the strain were Gram-negative, nonspore forming, catalase- and oxidase-positive, aerobic, nonmotile and rod-shaped. Strain JS5-2T exhibited 96.2–97.2, 95.1–96.3, and 95.4–95.8% 16S rRNA gene sequence similarities to the genera Herbaspirillum, Oxalicibacterium, and Herminiimonas, respectively. The highest sequence similarities were with Herbaspirillum autotrophicum IAM 14942T (97.2%) and Herbaspirillum frisingense GSF30T (97.1%). The major fatty acids of strain JS5-2T were C16:0 (35.0%), C17:0 cyclo (19.9%), C18:1 ω7c (11.4%), and summed feature 3 (C16:1 ω7c/C15:0 iso 2-OH) (15.2%), and the major polar lipids of strain JS5-2T were diphosphatidylglycerol and an unknown aminophospholipid. The strain contained Q-8 as the predominant ubiquinone. DNA-DNA relatedness values between strain JS5-2T and H. autotrophicum IAM 14942T, and H. frisingense GSF30T were 32 and 35%, respectively. The DNA G+C content of strain JS5-2T was 59.0 mol%. On the basis of phenotypic, genotypic, and physiological evidence, strain JS5-2T represents a novel species of a new genus, for which the name Paraherbaspirillum soli gen. nov., sp. nov. is proposed. The type strain JS5-2T (=KACC 12633T =NBRC 106496T) is proposed.  相似文献   

6.
The taxonomic positions of five Gram-negative, non-spore-forming and non-motile bacterial strains isolated from the rhizosphere of sand dune plants were examined using a polyphasic approach. The analysis of the 16S rRNA gene sequence indicated that all of the isolates fell into four distinct phylogenetic clusters belonging to the genus Chryseobacterium of the family Flavobacteriaceae. The 16S rRNA gene sequence similarities of isolates to mostly related type strains of Chryseobacterium ranged from 97.5% to 98.5%. All strains contained MK-6 as the predominant menaquinone, and iso-C15:0, iso-C17:0 3-OH and a summed feature of iso-C15:0 2-OH and/or C16:1 ω7c as the dominant fatty acids. Combined phenotypic, genotypic and chemotaxonomic data supported that they represented four novel species in the genus Chryseobacterium, for which the names Chryseobacterium hagamense sp. nov. (type strain RHA2-9T=KCTC 22545T=NBRC 105253T), Chryseobacterium elymi sp. nov. (type strain RHA3-1T=KCTC 22547T=NBRC 105251T), Chryseobacterium lathyri sp. nov. (type strain RBA2-6T=KCTC 22544T=NBRC 105250T), and Chryseobacterium rhizosphaerae sp. nov. (type strain RSB3-1T=KCTC 22548T=NBRC 105248T) are proposed.  相似文献   

7.
A novel Gram-positive strain, designated NIO-1003T, was isolated from a marine sediment sample collected from the Chorao Island, Goa Provence, India. Strain NIO-1003T was found to be strictly aerobic, motile, endospore-forming rods. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NIO-1003T belongs to the genus Fictibacillus and to be most closely related to Fictibacillus rigui KCTC 13278T, Fictibacillus solisalsi KCTC 13181T and Fictibacillus barbaricus DSM 14730T with 98.2, 98.0 and 97.2 % similarity and 25, 28, 39 nucleotide differences respectively. Strain NIO-1003T was characterized by having cell-wall peptidoglycan based on meso-diaminopimelic acid and MK-7 as the predominant menaquinone. The polar lipid profile exhibited the major compounds diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. In addition, minor amounts of an aminophospholipid were detected. The major fatty acids were identified as ai-C15:0, iso-C15:0, ai-C17:0 and C16:0, supporting the grouping of strain NIO-1003T into the family Bacillaceae. The DNA G+C content of strain NIO-1003T was determined to be 42.6 mol%. On the basis of phenotypic properties, phylogeny and DNA–DNA hybridisation analysis, strain NIO-1003T is considered to represent a novel species of the genus Fictibacillus for which the name Fictibacillus enclensis sp. nov. is proposed. The type strain is NIO-1003T (= NCIM 5458T = DSM 25142T).  相似文献   

8.
A novel endophytic actinomycete, designated strain NEAU-J3T, was isolated from soybean root (Glycine max (L.) Merr) and characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences suggested that strain NEAU-J3T fell within the family Micromonosporaceae. The strain was observed to form an extensively branched substrate mycelium, which carried non-motile oval spores with a smooth surface. The cell walls of strain NEAU-J3T were determined to contain meso-diaminopimelic acid and galactose, ribose and glucose were detected as whole-cell sugars. The major menaquinones were determined to be MK-9(H4) and MK-9(H6). The phospholipids detected were phosphatidylcholine and phosphatidylethanolamine. The major cellular fatty acids were determined to be C16:0, C18:1 ω9c, C18:0, C17:0, C17:1 ω7c, anteiso-C17:0, C16:1 ω7c and C15:0. The DNA G + C content was 62.5 mol%. On the basis of the morphological and chemotaxonomic characteristics, phylogenetic analysis and characteristic patterns of 16S rRNA gene signature nucleotides, strain NEAU-J3T is considered to represent a novel species of a new genus within the family Micromonosporaceae, for which the name Wangella harbinensis gen. nov., sp. nov. is proposed. The type strain of Wangella harbinensis is strain NEAU-J3T (=CGMCC 4.7039T = DSM 45747T).  相似文献   

9.
A Gram-negative, non-flagellated, non-gliding and rod-shaped, coccoid or filamentous bacterial strain, designated YCS-16T, was isolated from coastal seawater from a seaweed farm on the South Sea, South Korea, and its taxonomic position was investigated by using a polyphasic study. Strain YCS-16T was observed to grow optimally at 30 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Strain YCS-16T exhibited the highest 16S rRNA gene sequence similarity values to the type strains of Bizionia echini (96.1 %), Formosa spongicola (95.8 %), Bizionia algoritergicola (95.5 %) and Psychroserpens mesophilus (95.4 %). Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain YCS-16T joined the cluster comprising the type strains of Psychroserpens species. Strain YCS-16T was found to contain MK-6 as the predominant menaquinone and iso-C17:0 3-OH, iso-C15:1 G and iso-C15:0 as the major fatty acids. The major polar lipids detected in strain YCS-16T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain YCS-16T was determined to be 35.7 mol%. The phylogenetic analysis, chemotaxonomic data and other phenotypic properties revealed that strain YCS-16T constitutes a new genus and species within the family Flavobacteriaceae, for which the name Geojedonia litorea gen. nov., sp. nov. is proposed. The type strain of Geojedonia litorea is YCS-16T (=KCTC 32260T = CCUG 63682T).  相似文献   

10.
Two heterotrophic bacteroidetes strains were isolated as satellites from autotrophic enrichments inoculated with samples from hypersaline soda lakes in southwestern Siberia. Strain Z-1702T is an obligate anaerobic fermentative saccharolytic bacterium from an iron-reducing enrichment culture, while Ca. Cyclonatronum proteinivorum OmegaT is an obligate aerobic proteolytic microorganism from a cyanobacterial enrichment. Cells of isolated bacteria are characterized by highly variable morphology. Both strains are chloride-independent moderate salt-tolerant obligate alkaliphiles and mesophiles. Strain Z-1702T ferments glucose, maltose, fructose, mannose, sorbose, galactose, cellobiose, N-acetyl-glucosamine and alpha-glucans, including starch, glycogen, dextrin, and pullulan. Strain OmegaT is strictly proteolytic utilizing a range of proteins and peptones. The main polar lipid fatty acid in both strains is iso-C15:0, while other major components are various C16 and C17 isomers. According to pairwise sequence alignments using BLAST Gracilimonas was the nearest cultured relative to both strains (<90% of 16S rRNA gene sequence identity). Phylogenetic analysis placed strain Z-1702T and strain OmegaT as two different genera in a deep-branching clade of the new family level within the order Balneolales with genus. Based on physiological characteristics and phylogenetic position of strain Z-1702T it was proposed to represent a novel genus and species Natronogracilivirga saccharolityca gen. nov., sp. nov. (= DSMZ 109061T =JCM 32930T =VKM B 3262T). Furthermore, phylogenetic and phenotypic parameters of N. saccharolityca and C. proteinivorum gen. nov., sp. nov., strain OmegaT (=JCM 31662T, =UNIQEM U979T), make it possible to include them into a new family with a proposed designation Cyclonatronaceae fam. nov..  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号