首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
P. J. Young 《Oecologia》1990,83(4):504-511
Summary The patterns of torpor and euthermy during hibernation was documented for 28 free-ranging Columbian ground squirrels (Spermophilus columbianus) fitted with temperature-sensitive radio transmitter collars. Adult males began hibernation earlier, were euthermic for a greater proportion of the hibernating season and emerged earlier than other age and sex classes. The patterns of hibernation of adult females did not differ significantly from those of juveniles. Emergence from the hibernaculum was preceded by a long (3–12 d) euthermic interval in adult males but not in adult females or juveniles. Changes in soil temperature did not appear to initiate emergence. The greater time spent euthermic by adult males is interpreted as a significantly greater energy cost of hibernation for adult males than for other age and sex classes. The benefits offsetting these costs may be increased reproductive potential in spring and avoidance of predation in late summer.  相似文献   

2.
Gail R. Michener 《Oecologia》1992,89(3):397-406
Summary Over-winter torpor patterns of Richardson's ground squirrels hibernating in southern Alberta were monitored with temperature-sensitive radiocollars to determine if these patterns differed between males and females in a manner related to the greater costs of mating effort by males than females. The hibernation season (from immergence to emergence) was composed of three periods: post-immergence euthermy, heterothermy, and pre-emergence euthermy. The hibernation season was shorter for juveniles than adults both among males (< 150 versus 234 days) and females (185 versus 231 days), a reflection of the later immergence into hibernation by juveniles. However, regardless of the absolute duration of hibernation, heterothermy accounted for a smaller proportion of the hibernation season of males (93±5%) than females (98±1%) and, within the heterothermal period, males had shorter torpor bouts and longer inter-torpor arousals. Overall, males spent a smaller proportion of the hibernation season in torpor (85±6%) than females (92±1%). This sexual difference was largely attributable to the longer duration of preemergence euthermy for males than females. Males terminated torpor in January and February, when hibernacula were at their coldest, then remained euthermic for 8.8 days (range 0.5–25.0 days) before emergence. In contrast, females terminated torpor in March, when hibernaculum temperatures were increasing, then remained euthermic for only 1.1 days (range 0.5–2.0 days) before emergence. Males lost less mass per euthermic day during hibernation than females (7.0 versus 9.3 g/day). Males and females hibernated at similar depths (56 cm), but males had larger chambers than females (18 versus 16 cm3/g). Many males, but no females, cached seeds in the hibernaculum. Males met the costs of thermogenesis and euthermy from a combination of fat reserves and food caches, whereas females relied solely on fat. Access to food caches permitted males to terminate torpor several weeks in advance of emergence, during which time they recouped mass and developed sperm in preparation for the forthcoming mating season.  相似文献   

3.
The onset of mating in yellow-pine chipmunks (Tamias amoenus) follows emergence from a prolonged period of energy conservation during hibernation. Energy expenditures are greatly accelerated to meet the demands of the reproductive season. When emerging from hibernation, typical male chipmunks (breeders) have enlarged testes and a high level of plasma testosterone (T). However, certain males that do not participate in reproduction (nonbreeders) maintain small testes and low plasma T levels and emerge several weeks later than the breeders. The timing of the terminal arousal from hibernation and onset of mating are associated with increased plasma T levels. Experimental elevation of T levels in T. amoenus outside the mating season has been associated with a decrease in body mass, further suggesting an effect of T on energy balance. To test this hypothesis, we measured daily energy expenditure (DEE) in free-living, nonbreeding male chipmunks in the presence and absence of a T-implant. We also measured DEE in breeding males when endogenous T levels were high. DEE of the nonbreeders was not affected by our manipulation of plasma T, and the DEE of breeding males did not differ from that of nonbreeders. We conclude that energy expenditure on a daily basis in male yellow-pine chipmunks is not influenced by levels of T. However, on a seasonal basis, the earlier emergence from hibernation by breeding males, which appears to be influenced by T, represents an overall seasonal energy expenditure that exceeds that of nonbreeding males.  相似文献   

4.
Summary Antelope ground squirrels (Ammospermophilus leucurus, 80–100 g) began surface activity 1.0–1.5 h after sunrise and ended it 0.5–1.25 h before sunset throughout the year near Barstow, California. Daily energy expenditure (DEE) of free-living animals measured with doubly labeled water (H3H18O) decreased from 1,340 kJ kg-1 d-1 in April to 970 in October. Resting metabolic rates (RMR) of freshly-captured, fed, ground squirrels varied through the year (22.1 J g-1 h-1 in August, 19.1 in January) but most of the change in DEE could be explained by differences in thermoregulatory costs between seasons. The ground squirrels had lower rates of resting metabolism at night (15.3J g-1 H-1) than during the day.The cost of activity (calculated by subtracting 24 h resting costs from total DEE during August and October, periods when thermoregulatory costs were negligible) was 550 kJ kg-1 d-1 in August and October. Thus, activity accounted for about 50% of the total DEE. The mean rate of energy expenditure during the activity period, calculated as activity cost (kJ d-1) divided by activity time (h d-1), then plus RMR, was about 3xRMR. This multiplication factor may be useful as an estimator of foraging costs or in estimating DEE from time budgets.  相似文献   

5.
We used the doubly-labelled water technique to measure daily energy expenditure (DEE) of a free-living uniparental incubator, the white-throated dipper Cinclus cinclus , in Scotland. DEE was 205±8 (s.e.m.) kJ d−1 for 17 females incubating their natural clutch sizes, equivalent to 3.2±0.1×basal metabolic rate (BMR). To investigate the influence of clutch size on the energy budget, we measured the DEE of 14 females with clutches increased or reduced by a single egg. Birds with reduced clutch sizes had an energy expenditure with a mean and variance that did not differ from those of birds with unmanipulated clutches. Enlarging the clutch led to an increase in energy expenditure to over 4×BMR for some individuals but not for others, resulting in greater variance in energy expenditure for birds with enlarged clutches. Individual variation in energy expenditure could not be fully explained by environmental conditions, by patterns of behaviour or clutch size. Incubating females received a maximum of only 4 kJ d−1 (2% of DEE) from provisioning by the male, and mobilised up to 6 kJ d−1 (3% of DEE) from reserves. Females spent 2.9±0.2 h (n=20) away from the nest each day, so a foraging rate of 95 kJ h−1 was required during incubation recesses to balance DEE. This 'required foraging rate' is double previous estimates of the maximum rates of energy acquisition for birds of this size. We suggest that the greater likelihood of a raised energy expenditure associated with larger clutches, combined with the difficulties in maintaining energy supplies, may constitute a constraint on avian clutch size.  相似文献   

6.
We measured daily energy expenditure (DEE) and water turnover rates in lactating and non-lactating short beaked echidnas (Tachyglossus aculeatus) using the doubly labelled water technique during the lactation period in spring. Reproductively inactive echidnas were on average significantly heavier (median: 3354 g; range: 2929-3780 g; N=4) than lactating females (median: 2695 g; range: 2690-2715 g; N=3) during the equivalent time period. The median water flux rate of lactating echidnas (152 ml day(-1); range: 120-198 ml day(-1)) did not differ significantly from that of non-lactating females (170 ml day(-1); range: 128-227 ml day(-1)). The median DEE of echidnas that were lactating was 645 kJ day(-1) (range: 581-850 kJ day(-1)), which was not different from the median DEE of non-reproductive control females (763 kJ day(-1); range: 720-766 kJ day(-1)). Lactating females somehow compensate for the energy costs of milk production, resulting in a daily energy budget that is not different from that of non-reproductive females. At least part of their energy minimising strategy could involve the use of moderate heterothermy, allowing a greater proportion of daily energy expenditure to diverted to milk production.  相似文献   

7.
Winter is energetically challenging for small herbivores because of greater energy requirements for thermogenesis at a time when little energy is available. We formulated a model predicting optimal wintering body size, accounting for the scaling of both energy expenditure and assimilation to body size, and the trade-off between survival benefits of a large size and avoiding survival costs of foraging. The model predicts that if the energy cost of maintaining a given body mass differs between environments, animals should be smaller in the more demanding environments, and there should be a negative correlation between body mass and daily energy expenditure (DEE) across environments. In contrast, if animals adjust their energy intake according to variation in survival costs of foraging, there should be a positive correlation between body mass and DEE. Decreasing temperature always increases equilibrium DEE, but optimal body mass may either increase or decrease in colder climates depending on the exact effects of temperature on mass-specific survival and energy demands. Measuring DEE with doubly labeled water on wintering Microtus agrestis at four field sites, we found that DEE was highest at the sites where voles were smallest despite a positive correlation between DEE and body mass within sites. This suggests that variation in wintering body mass between sites was due to variation in food quality/availability and not adjustments in foraging activity to varying risks of predation.  相似文献   

8.
Summary Adult male Richardson's ground squirrels,Spermophilus richardsonii, were estimated to have emerged from hibernation in late February to early March, and adult females in mid to late March. Half of the females trapped in late March were not pregnant, as against 10% after that time. In late March males and all females had similar WAT (white adipose tissue) deposits. Between late March and early June, WAT deposits in males increased from 14 g to 64 g (a rate of 5.6 g per week). In non-parous females WAT deposits increased from 13 g to 48 g from late March to late May (4.2 g per week). Fat deposits decreased during lactation but thereafter increased from 8 g to 29 g (a rate of 6.0 g per week) between early May and early June. In males the rate of fatty acid synthesis in BAT (brown adipose tissue), liver and WAT did not change from late March to late May, and rates in the corresponding tissues of non-pregnant females were similar to those in males. Fatty acid synthesis decreased during late pregnancy and lactation. After lactation, the rate of fatty acid synthesis in all tissues increased to that in males and non-pregnant females. Males initiated fattening 5–7 weeks earlier than females. It is concluded that compared with adult males, the later immergence of adult female Richardson's ground squirrels into hibernation is due primarily to later initiation of fattening and less to differences in rate of lipid synthesis after the reproductive period. Rates of fatty acid synthesis in liver and BAT were several times greater than that in WAT. The former tissues may contribute fatty acids for prehibernatory fattening.Abbreviations BAT brown adipose tissue - WAT white adipose tissue  相似文献   

9.
We measured daily energy expenditure (DEE) continuously for a whole year in a free ranging bird, the macaroni penguin Eudyptes chrysolophus . We combined these measurements with concurrently recorded foraging behaviour, and literature information on body mass and dietary factors to estimate prey consumption rates and foraging success. DEE was at a maximum during late chick-rearing but was equally high during all other active phases of the breeding season. DEE was approximately 4×resting metabolic rate, which accords with established theory and suggests a common 'energetic ceiling' throughout the summer period. However, whether this represents a maximum in physiological capacity, or a rate which optimises fitness is still unclear. Rates of prey consumption and foraging success followed different patterns from daily energy expenditure. Daily prey consumption was high as the penguins prepared for long fasts associated with moulting and incubation but relatively low during chick-rearing, when foraging areas were restricted and foraging success lower. It appears that the energy intake of macaroni penguins is subject to extrinisic or environmental constraints rather than to intrinsic physiological limits.  相似文献   

10.
The timing of the chick‐rearing phase is known to have a profound effect on the reproductive success of birds. However, little is known about the energetic costs faced by the parents during different periods of the breeding season. These costs may have vital consequences for both their survival and future reproduction. In most studies, daily energy expenditure (DEE) of breeding and non‐breeding birds has been compared, without controlling for the effect of season. In the present study, we examined the energy demands of breeding compared to non‐breeding Palestine sunbirds Nectarinia osea and whether there were sex‐specific differences in DEE within and between different seasons. We predicted that DEE would be elevated when birds rear chicks, especially at cooler ambient temperatures. Time‐energy budgets were constructed for pairs of sunbirds, rearing chicks, or not breeding, in spring and summer. There were significant seasonal differences in estimates of DEE in non‐breeders that were 21% higher in spring than in summer. We attributed these to increases in non‐flight metabolic rate rather than changes in time spent on different activities. Our estimates of DEE for the birds that were rearing chicks were higher than non‐breeding adults. In females the increase in DEE when breeding, compared to when not breeding, was similar in both spring and summer, while males increased their DEE much less when breeding in spring. The differences in estimated DEE, however, were not significant between male and female birds in any season. Between seasons, female breeders had 17.1% higher DEE in spring than in summer, while male breeders showed no difference in DEE when rearing chicks in different seasons. Accordingly, our initial prediction was supported, as DEE in chick‐rearing adults was higher than in non‐breeding adults. In addition, although temperatures are lower in spring, breeding in the spring is only more costly than breeding in summer for females. Apparently, males are more flexible in reallocating their time and energy spent on different activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号