首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Vasoactive Intestinal Peptide (VIP) is a 28-amino-acid putative neurotransmitter that may have a role in the regulation of myometrial blood flow and uterine contractility. The chronically cannulated fetal sheep preparation was used to examine the fetal clearance and placental transfer of VIP. Metabolic Clearance Rate (MCR) and placental transfer of VIP were measured by alternate steady-state infusion of VIP into the mother and fetus. Plasma concentrations of VIP were measured by radioimmunoassay. MCR was similar in the pregnant (45 +/- 10 ml/kg/min) and nonpregnant ewes (35 +/- 5 ml/kg/min). However, compared to both pregnant and nonpregnant ewes, fetal MCR was significantly increased at 77 +/- 15 ml/kg/min, indicating highly developed clearance mechanisms in the fetus. VIP did not cross the placenta in either direction. Both the placenta and fetal liver metabolized VIP and contributed to the elevated fetal clearance of VIP. The results show that VIP in fetal tissue is unlikely to influence maternal uterine activity with any VIP-mediated effects emanating from maternal and/or placental sources.  相似文献   

2.
Individual maternal and fetal flows to 706 placental cotyledons obtained from 9 chronically catheterized pregnant ewes and their fetuses (gestation age 123-141 days) were measured. The larger the cotyledon the greater the maternal and fetal blood flow to it. Both fetal and maternal flows to larger cotyledons, however, tended to be lower when corrected for the weight of the cotyledon perfused. Changes in fetal placental flow (dfgc, ml/min/g) occurring within 15 min of administration of 15 mg i.v. of captopril to the ewe were dependent on changes in fetal placental vascular resistance (dcotfr) and maternal flow (dmgc) according to the equation dfgc = 0.123 + 0.185 dmgc - 0.026 dcotfr. Changes in maternal placental flow occurring within 15 min of administration of 15 mg i.v. of captopril to the ewe were dependent on changes in maternal placental vascular resistance (dcotmr) and changes in fetal flow according to the equation dmgc = 0.483 + 0.496 dfgc - 0.0198 dcotmr. The changes in fetal flow over the next 1.5h of treatment with captopril at 6 mg/h were dependent on neither changes in fetal placental vascular resistance nor maternal placental flow. changes in maternal placental flows over the same time were no longer related to changes in fetal flow and depended only to a minimal extent on changes in maternal placental resistance. These analyses suggest that treatment of the pregnant ewe with captopril may have disturbed the normal relationships between maternal and fetal placental circulations.  相似文献   

3.
To study the effects of reduced uterine blood flow on fetal and placental metabolism, adrenaline has been infused at physiological doses (0.5 microgram/min per kg) into the circulation of the pregnant sheep. This gives a reduction of about one third of uterine blood flow at days 120-143 of pregnancy, but causes no significant change in umbilical blood flow. In contrast to the effects of constricting the uterine artery to reduce blood flow to a similar degree, placental oxygen consumption was reduced and that, together with a large increase in lactate production, indicated the placenta became hypoxic. The fetal blood gas status and hence oxygen consumption was not affected significantly. A consistent arterio-venous difference for glucose across the umbilical or uterine circulations was not detected unless the uterine blood flow was comparatively high. Glucose balance across the uterus showed a close linear relationship with uterine blood flow and more particularly with the supply of glucose to the uterus. There was clear evidence for glucose uptake by the placenta and fetus and also glucose output by both. The latter was more common when uterine blood flow was comparatively low or reduced by adrenaline infusion. The results are consistent with the concept that glucose supply has to be maintained to the placenta even at the expense of fetal stores, although lactate can substitute if there is enhanced output because of fetal hypoxia. They indicate that placental mobilisation of glycogen can lead to a net output of glucose to the mother. The manner of communicating to the fetus changes in placental state that occur during maternal adrenaline infusion is not clear. However towards the end of the 60 min infusion, elevation of fetal plasma adrenaline, probably resulting from a breakdown of the placental permeability barrier, may be an important signal.  相似文献   

4.
Mothers and fetuses are expected to be in some degree of conflict over the allocation of maternal resources to fetal growth in the intrauterine environment. Variation in placental structure and function may be one way a fetus can communicate need and quality to its mother, potentially manipulating maternal investment in its favor. Whereas common marmosets typically produce twin litters, they regularly give birth to triplet litters in captivity. The addition of another fetus is a potential drain on maternal resource availability and thus a source of elevated conflict over resource allocation. Marmoset littermates share a single placental mass, so that differences in the ratio of fetal to placental weight across litter categories suggest the presence of differential intrauterine strategies of resource allocation. The fetal/placental weight ratio was calculated for 26 marmoset pregnancies, representing both twin and triplet litters, to test the hypothesis that triplet fetuses respond to intrauterine conflict by soliciting placental overgrowth as a means of accessing maternal resources. In fact, relative to fetal mass, the triplet marmoset placenta is significantly undergrown, with individual triplets associated with less placental mass than their twin counterparts, suggesting that the triplet placenta is relatively more efficient in its support of fetal growth. There still may be an important role for maternal-fetal conflict in the programming of placental structure and function. Placental adaptations that solicit potential increases of maternal investment may occur at the microscopic or metabolic level, and thus may not be reflected in the size of the placenta as a whole.  相似文献   

5.
The distribution of methadone between mother and fetus after a single dose and at steady state was determined using the chronic pregnant ewe preparation. Chronic indwelling catheters were placed in the maternal aorta and vena cava, umbilical vein and fetal aorta. Following a single i.v. dose (0.5 mg/kg) to the mother, methadone was rapidly distributed to the fetus, with peak concentration in the umbilical vein occurring within two min. An umbilical venous-arterial gradient existed for 10–15 min after drug administration, indicating uptake of methadone by fetal tissues. Methadone concentration in the fetus was 2–5 times lower than those in the mother even in the post-distribution phase. The terminal half-life of methadone in 4 animals was 57±7.6 (S.E.) min in the mother, and 58.5±10.0 (S.E.) min in the fetus. When methadone was infused at a constant rate to the mother (0.01 mg/kg/min), steady state was achieved in both mother and fetus by 4–5 hrs. In 5 animals, maternal steady state was found to be 203±18.8 (S.E.) ng/ml, and fetal steady state was found to be 29.7±2.9 (S.E.) ng/ml. These studies show that methadone is rapidly distributed to the fetus, but fetal concentration remain lower than maternal concentration at all times.  相似文献   

6.
We administered tracer quantities of biologically active 125I-labelled recombinant human erythropoietin by intravenous bolus injection to seven late gestation pregnant ewes. Maternal and fetal blood was sampled over the subsequent six hours and assayed for erythropoietin-specific radioactivity. Despite the expected increase in maternal plasma immunoprecipitable 125I-labelled erythropoietin radioactivity, fetal plasma levels remained unchanged throughout the study. In addition, erythropoietin receptors were not detected in ovine and human placental tissue. We conclude that biologically active 125I-labelled erythropoietin does not cross the placenta from mother to fetus in measurable quantities in sheep, and likely in humans. Thus, these data indicate the levels of erythropoietin measured in fetal plasma are reflective of fetal, and not maternal, erythropoietin production and elimination.  相似文献   

7.
The response of the placental circulations to prostaglandin I2 (maternal dose 20 microgram/kg, fetal dose 180 microgram/kg) was observed in 10 near-term sheep with chronically implanted vascular catheters. The blood flows before and 90 s after the injection of prostaglandin I2 were measured using radioactive microspheres. The injection of prostaglandin I2 to the mother decreased th blood pressure from 109 +/- 4 to 69 +/- 5 mmHg (P < 0.001) and increased the vascular resistance of the maternal cotyledons from 0.166 +/- 0.018 to 0.209 +/- 0.02 mmHg/(ml/min) (P < 0.001). The vascular bed of the non-cotyledonary uterus vasodilated as the resistance fell from 0.705 +/- 0.02 to 0.266 +/- 0.02 mmHg/(ml/min). (P < 0.001). Prostaglandin I2 caused the fetal arteriovenous pressure to fall from 37.6 +/- 1.35 to 26.0 +/- 1.6 mmHg. There was no significant change in the vascular resistance of the fetal cotyledons. We observed vasodilation in the fetal membranes as vascular resistance fell from 1.06 +/- 0.14 to 0.75 +/- 0.10 mmHg/(ml/min) (P < 0.001). The infusion of prostaglandin I2 significantly depressed the response of the placenta and uterus to norepinephrine. We have not proved that prostaglandin I2 plays a direct role in maintaining placental vascular homeostasis but it may modulate the response of this organ to exogenous vasoactive agents.  相似文献   

8.
Dual-sided perfusions of the human placental cotyledon in vitro were used to study effects of low intensity magnetic fields (MFs) of 2 mT, 50 Hz (E1, 10 perfusions) and 5 mT, 50 Hz (E2, 10 perfusions). In the control group C (10 experiments) no field was used. Perfusions lasted 180 min each. Increased release of calcium ions from the placental cotyledon was found in the fetal circulation during perfusion when the 2 mT, 50 Hz MF was used. No changes in the release of sodium and magnesium ions were observed compared to the control group. The 5 mT, 50 Hz oscillating MF intensified the release of sodium ions from the perfused cotyledon both to the fetal and maternal circulation up to the 150th min of the experiment. Increased release of magnesium ions was observed only to the fetal circulation between 120 and 180 min and of calcium ions to the fetal circulation between 60 and 180 min. No significant differences in K concentrations were found between the control and MF exposed cotyledons under conditions of these experiments.  相似文献   

9.
The metabolism by the fetus and placenta of [2-3H, U-14C]glucose infused into fetal sheep has been studied. Uptake of glucose from the fetus by the placenta and transfer to the ewe, as well as placental metabolism of glucose to fructose and lactate have been quantified. About two-thirds of the glucose removed from the fetal circulation was taken up by placenta. Less than 15% of this passed back into the maternal circulation, the remainder was converted, at roughly equivalent rates, into lactate and fructose, most of which was transferred back to the fetus. It seems likely that little of this glucose is oxidised by the placenta. This data indicates that there are substrate cycles between the placenta and fetus, one possible function of which is to limit fetal glucose loss back to the mother; lactate and fructose have limited placental permeability. At uterine blood flow rates in the middle of the normal range net glucose uptake by the placenta from the maternal circulation was about 7-fold higher than that from the fetus. About 20% of this was transported to the fetus, 50% was oxidised and much of the remainder converted to lactate and transferred back to the ewe. Labelling patterns in fructose and lactate make it unlikely that this placental pool of glucose mixes freely with that derived from uptake from the fetus. Net movement of glucose across the placenta is markedly influenced by fluctuations in uterine blood flow over the normal range of 500-3000 ml/min. At low flow rates there is net output of glucose from the fetus to the placenta, and in some instances from the placenta to the ewe, i.e. there is evidence of net utero-placental production of glucose to the ewe separate from output by the fetus. There is a close linear relationship between uterine glucose supply (maternal arterial concentration x uterine blood flow) and net balance across the placenta. As uterine supply of glucose falls there is increased uptake by the placenta of glucose from the fetal circulation and corresponding enhanced recycling of fructose and lactate to the fetus. This production of fructose and lactate by the placenta may function to reduce glucose loss from the fetus to the ewe. Hence at high rates of placental uptake of glucose from the fetus placental production of lactate and particularly fructose may approach saturation and allow significant backflow of glucose from the fetus to the ewe. Under these conditions glucose uptake may in part sustain placental oxygen consumption.  相似文献   

10.
The placenta is a specialized vascular interface between the maternal and fetal circulations that increases in size to accommodate the nutritional and metabolic demands of the growing fetus. Vascular proliferation and expansion are critical components of placental development and, consequently, interference with vascular growth has the potential to severely restrict concurrent development of both the placenta and fetus. In this study, we describe the effects of an antiangiogenic agent, TNP-470, on placental vascular development and the induction of a form of intrauterine growth restriction (IUGR) in mice. Administration of TNP-470 to dams in the second half of pregnancy resulted in a smaller maternal weight gain accompanied by decreased placental and fetal sizes in comparison with control animals. Total numbers of fetuses per litter were not affected significantly. Stereological analysis of placentas revealed no changes in the combined lengths of vessels. However, the mean cross-sectional areas of maternal and fetal vessels in the labyrinth of TNP-470-treated mice were reduced at Embryonic Day 13.5 (E13.5) but not at E18.5. Further analysis showed reduced placental endothelial proliferation at E13.5 and E18.5 in TNP-470-treated animals. No other structural or morphometric differences in placentas were detected between TNP-470-treated and control mice at E18.5. This study provides conclusive evidence that administration of TNP-470 interferes with placental vascular proliferation and vessel caliber and results in a reproducible model of IUGR.  相似文献   

11.
Six near-term ewes were instrumented to measure regional blood flows in the maternal and fetal subthoracic structures and allowed to recover for 5 days. Control blood flows were measured and 10(-3) molar forskolin was infused in the fetal hindlimb vein at 1 ml/min. After 10 min of infusion, maternal and fetal regional blood flows were measured. The fetal blood pressure was 44 +/- 3 mmHg in the control state and 40 +/- 4 mmHg after forskolin, P less than 0.056. The fetal renal vascular resistance changed from 24.4 +/- 2.4 to 17.5 +/- 1.7 mmHg.ml-1.min.g, P less than 0.005. The placenta had a control resistance of 27.7 +/- 5.0 and 25.6 +/- 5.1 mmHg.ml-1.min.g after forskolin, P less than 0.05. The placental membranes showed vasodilation: control resistance was 261 +/- 49 and 168 +/- 39 mmHg.ml-1.min.g after forskolin, P less than 0.02. The generalized vasodilation of the fetal circulation was paralleled in the maternal circulation. Forskolin, a lipid soluble diterpene, apparently had a placental clearance close to the theoretical maximum. Vasodilation was seen in the maternal renal, placental and uterine vasculatures. Maternal blood pressure was unchanged. Maternal placental vascular resistance was 47.4 +/- 3.0 mmHg.ml-1.min.g in the control state and 40.6 +/- 3.3 mmHg.ml-1.min.g after forskolin, P less than 0.02. Forskolin is a vasodilator in both the fetal and maternal circulations. The maintenance of a relatively normal blood pressure in the face of regional vasodilation shows that forskolin may have a positive inotropic effect on the fetal heart. These results indicate that neither the fetal nor the maternal ovine placental vasculature is maximally dilated in the control state.  相似文献   

12.
Placental transfer of glucose   总被引:2,自引:0,他引:2  
The rates of glucose transfer from maternal blood to pregnant uterus and from placenta to fetus were measured in eight sheep at spontaneously occurring glucose concentrations (control state) and while the fetus, the mother, or both were receiving a constant infusion of glucose. In addition two fetuses received insulin infusions. In the control state the net glucose flux from placenta to fetus was only 27 +/- 2.6% (SEM) of the net flux from the uterine circulation to the pregnant uterus. An empirical equation describing the relationship between placental glucose transfer and arterial plasma glucose concentrations was derived from the data and compared with equations constructed on the basis of methematical models of placental function. This analysis indicates that: (1) placental glucose transfer is mediated by carriers with Km approximately equal to 70 mg/dl; (2) the rate of glucose transfer from mother to fetus is limited primarily by the transport characteristics and glucose consumption rate of the placenta; (3) under normal conditions of placental perfusion, glucose transfer is approximately 15% less than it would be if placental blood flows were infinitely large.  相似文献   

13.
The concentrations of glucose, fructose, sorbitol, glycerol, and myo-inositol in sheep blood and tissues have been reported previously (1--5). However, the other polyols that are at low concentrations have not been investigated in pregnant sheep due to technical difficulties. By using HPLC and gas chromatography-mass spectrometry, seven polyols (myo-inositol, glycerol, erythritol, arabitol, sorbitol, ribitol, and mannitol) and three hexoses (mannose, glucose, and fructose) were identified and quantified in four blood vessels supplying and draining the placenta (maternal artery, uterine vein, fetal artery, and umbilical vein). Uterine and umbilical blood flows were measured, and uptakes of all the polyols and hexoses in both maternal and fetal circulations were calculated. There was a significant net placental release of sorbitol to both maternal and fetal circulations. Fructose was also taken up significantly by the uterine circulation. Maternal plasma mannose concentrations were higher than fetal concentrations, and there was a net umbilical uptake of mannose, characteristics that are similar to those of glucose. Myo-inositol and erythritol had relatively high concentrations in fetal plasma (697.8 plus minus 53 microM and 463.8 plus minus 27 microM, respectively). The ratios of fetal/maternal plasma arterial concentrations were very high for most polyols. The concentrations of myo-inositol, glycerol, and sorbitol were also high in sheep placental tissue (2489 plus minus 125 microM/kg wet tissue, 2119 plus minus 193 microM/kg wet tissue, and 3910 plus minus 369 microM/kg wet tissue), an indication that these polyols could be made within the placenta.  相似文献   

14.
During pregnancy, the placenta regulates the transfer of oxygen, nutrients, and residual products between the maternal and fetal bloodstreams and is a key determinant of fetal exposure to xenobiotics from the mother. To study the disposition of substances through the placenta, various experimental models are used, especially the perfused placenta, placental villi explants, and cell lineage models. In this context, nanotechnology, an area of study that is on the rise, enables the creation of particles on nanometric scales capable of releasing drugs aimed at specific tissues. An important reason for furthering the studies on transplacental transfer is to explore the potential of nanoparticles (NPs), in new delivery strategies for drugs that are specifically aimed at the mother, the placenta, or the fetus and that involve less toxicity. Due to the fact that the placental barrier is essential for the interaction between the maternal and fetal organisms as well as the possibility of NPs being used in the treatment of various pathologies, the aim of this review is to present the main experimental models used in studying the maternal–fetal interaction and the action of NPs in the placental environment.  相似文献   

15.
The aim of the present study was to examine the effect of lipopolysaccharide (LPS) on the levels of prostaglandin E(2) (PGE(2)) in the perfusates of the fetal and the maternal compartments of perfused human term placental tissue. Term placentas were perfused for 10h in the absence [control, (n=4)] and presence of LPS [LPS=1 microg/kg perfused placental tissue, (n=4)] in the maternal reservoir. Perfusate samples from the fetal and the maternal circulations were collected every 30 min and examined for PGE(2) levels by radio-immunoassay. PGE(2) levels in the fetal circulation were gradually increased reaching significant peak value of 479+/-159 pg/ml, as compared to PGE(2) levels in the maternal circulation (140+/-146 pg/ml) (p<0.05). After 10 hours of perfusion with control medium, PGE(2) levels in the maternal circulation (347+/-144 pg/ml) were significantly higher as compared to the fetal circulation (150+/-57 pg/ml) (p<0.05). In presence of LPS, PGE(2) levels in the fetal circulation increased reaching a peak value of 1028+/-663 pg/ml after 240 min of perfusion. The levels of PGE(2) in the control group after 240 min of perfusion were significantly lower (156+/-77 pg/ml) (p<0.05). No significant differences were detected in the levels of PGE(2) in the perfusate of the maternal compartment in presence of LPS, as compared to control. Our results suggest that the placenta may play an important role in maintaining high levels of PGE(2) in the fetal circulation and low PGE(2) levels in the maternal circulation during normal pregnancy. Moreover, placental PGE(2) release into the fetal and the maternal circulations may be differently affected in presence of intra-uterine infection/inflammation.  相似文献   

16.
Transplacental movement of calcium from mother to fetus is essential for normal fetal development. In most species, fetal plasma calcium levels are higher than maternal levels at term. The role of cholecalciferol metabolites, with specific emphasis on 1,25-dihydroxycholecalciferol (1,25(OH)2D), in placental calcium transport and maintenance of the fetomaternal gradient has been extensively investigated. In rats, there is not an absolute demand for 1,25(OH)2D for maintenance of fetal calcium homeostasis in utero, even though it is essential for maintenance of maternal plasma calcium levels. However, in sheep, the absence of 1,25(OH)2D results in disruption of both maternal and fetal calcium homeostasis. It is known that rat and human placentas contain specific cytosolic binding proteins for 1,25(OH)2D that are similar to the well-characterized intestinal receptor. Two calcium-binding proteins (CaBP) have been detected in rat and human placentas: a protein immunologically identical to the vitamin D-dependent CaBP and a calcium-dependent ATPase. The levels of CaBP in rat placenta have been shown to increase in response to exogenously administered 1,25(OH)2D but cannot be obliterated with maternal vitamin D deficiency. No relationship has been shown between 1,25(OH)2D and placental Ca-ATPase in any species. Thus, the mechanism of action of 1,25(OH)2D in maintenance of the transplacental calcium gradient in sheep is unknown. In the pregnant rat (and perhaps human), 1,25(OH)2D is a critical factor in the maintenance of sufficient maternal calcium for transport to the fetus and may play a role in normal skeletal development of the neonate.  相似文献   

17.
We constructed and used a mathematical model of maternal-fetal heat exchange in the sheep to explore the effects of changes in certain parameters on steady-state fetal temperatures and to determine whether the fetus in the model has any potential to control its own temperature. The model took into account both fetal and placental heat production and exchange of heat in the placenta, across the fetal skin, via amniotic fluid, and through the uterine wall. The maternal ewe was assumed to be a constant temperature heat sink. Changes in placental or fetal heat production were calculated to change the ratio of heat exiting across the placenta or fetal skin significantly but to have little effect on fetal core temperature, e.g., a rise of only 0.8 degrees C was predicted after a twofold increase in fetal heat production. Fetal placental blood flow was calculated to affect fetal temperature the most of any flow, a reduction to zero causing fetal temperature to rise 5.0 degrees C. Changes in heat conductances between fetal skin and amniotic fluid, or between amniotic fluid and uterine wall, had minimal effect on fetal temperature. From the model calculations here and because heat exchange within the sheep placenta has previously been calculated to be extremely efficient, we conclude that the fetal sheep has little ability to control its temperature by changes in heat dissipated through extraplacental pathways. Thus the model predicts an effective heat clamp that closely links fetal to maternal temperature.  相似文献   

18.
The present study tested the hypothesis that the nocturnal melatonin rhythm in the fetal sheep results from transfer across the placenta of melatonin from maternal circulation. Pregnant ewes were exposed to an artificial reverse photoperiod at about 100 days gestation (n = 6; lights on 10 h, 2200-0800 h PST). This treatment tested for entrainment in the ewe and its fetus of the 24-h pattern of melatonin production from the pineal gland. Other ewes were pinealectomized at 55 days post-breeding (n = 6), and similarly treated. Catheters were implanted and blood samples were collected between 117 and 142 days gestation at two 48-h periods, about every 0.5-4 h, to assess the pattern of melatonin in maternal and fetal circulations. In pineal-intact ewes and their fetuses, melatonin rhythms conformed to the reverse photoperiod, i.e. plasma melatonin concentrations were relatively low during the light period and significantly increased for the duration of darkness. In contrast, maternal pinealectomy abolished the melatonin rhythms in both the ewe and fetus; melatonin concentrations remained at or below the limits of detection. Pineal-intact sheep gave birth about 139 +/- 2 days (mean +/- SE, n = 4) at 1915 +/- 0.7 h and pinealectomized ewes (n = 5 of 6) lambed at 149 +/- 2 days at 0424 +/- 0.5 h. Finally, in lambs (n = 3) born to pinealectomized ewes, typical melatonin rhythms were present within the first week of life. The findings indicate that the maternal pineal gland is responsible for the 24-h pattern of melatonin in the ewe and its fetus during the last trimester of pregnancy.  相似文献   

19.
It is difficult, if not impossible, to measure the placental transfer of glucose directly because of placental glucose consumption and the low A-V glucose difference across the sheep placenta. We have approached the problem of quantifying placental hexose transfer by using a nonmetabolized glucose analogue (3-O-methyl glucose) which shares the glucose transport system. We have measured the clearance by using a multisample technique permitting least squares linear computing to avoid the errors implicit in the Fick principle. The placental clearance of 3-O-methyl glucose was measured in the control condition and after the administration of insulin to the fetal circulation. A glucose clamp technique was used to maintain constant transplacental glucose concentrations throughout the duration of the experiment. A control series was performed in which the only intervention was the infusion of normal saline. In these experiments the maternal and fetal glucose concentrations remained constant as did the volume of distribution of 3-O-methyl glucose in the fetus. The maternal insulin concentration remained constant and fetal insulin concentration changed from 11 +/- 2 microU/ml to 355 +/- 51 microU/ml (P less than 0.01). In the face of this large increase in fetal plasma insulin, there was no change in the placental clearance of 3-O-methyl glucose. In the control condition the clearance was 14.1 +/- 1.0 ml/min per kg and this was 13.8 +/- 1.0 ml/min per kg in the high insulin condition. Fetal insulin may change placental glucose flux by decreasing fetal plasma glucose concentrations but does not do so by changing the activity of the glucose transport system.  相似文献   

20.
In fetal sheep, plasma concentrations of both adrenocorticotropic hormone (ACTH) and cortisol increase at the end of gestation. The increase in fetal plasma cortisol concentration induces placental 17 alpha-hydroxylase and 17, 20 lyase activities and therefore stimulates the placenta to secrete relatively more estrogen and relatively less progesterone. The resultant increase in the estrogen-to-progesterone ratio is thought to increase uterine contractility and initiate labour. We had previously demonstrated that the efficacy of cortisol-induced suppression of ACTH secretion at the end of gestation was reduced. We hypothesized that cortisol-induced stimulation of placental steroidogenesis promoted the secretion of a steroid hormone which reduced negative feedback efficacy, and therefore allowed both ACTH and cortisol secretion to increase simultaneously. Others had proposed that cortisol stimulates the placental secretion of corticotrophin releasing factor, which might also stimulate fetal ACTH secretion. This study was designed to test the hypotheses that cortisol reduces its own feedback efficacy or stimulates CRF secretion. Five pregnant ewes with twin pregnancies were studied after chronic catheterization. One fetus was subjected to infusion of hydrocortisone sodium succinate (10 micrograms/min, iv) and the other to infusion of saline. After 5 and 53 h of infusion, each fetus was subjected to a period of hypotension produced by infusion of sodium nitroprusside. The infusion of hydrocortisone sodium succinate decreased plasma progesterone concentrations in the fetal circulation into which the steroid was infused, and in the maternal circulation. Fetal plasma CRF concentrations were increased on the third day of infusion, the day in which the fetuses went into labour.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号