首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
刘小民  袁明龙 《遗传》2018,40(6):451-466
在长期进化过程中,昆虫形成了强大的天然免疫防御系统,即体液免疫和细胞免疫。体液免疫主要包括Toll、IMD和JAK/STAT 3条信号通路,通过信号转导及免疫途径调控免疫相关基因的表达,诱导产生抗菌肽和其他效应分子。细胞免疫由血细胞介导,主要完成对病原物的包裹、吞噬和集结等。近年来,昆虫基因组学快速发展,通过生物信息学等方法从昆虫基因组数据中已鉴定到大量免疫相关基因,对这些基因的研究加深了人们对昆虫天然免疫分子机制的认识和理解。根据基因功能,免疫相关基因分为识别、信号转导、调制器、效应分子、黑化反应、RNA干扰和其他基因等7类,这些基因通过互作来调控体液免疫和细胞免疫。本文对昆虫免疫相关基因的分类、功能及家族进化等方面的研究成果进行总结,并对今后昆虫免疫的研究重点进行了展望,以期为昆虫免疫分子机制的研究及开发新的害虫防治策略提供依据。  相似文献   

2.
昆虫乙酰胆碱酯酶基因研究进展   总被引:3,自引:0,他引:3  
对昆虫乙酰胆碱酯酶(acetylcholinesterase, AChE,EC 3.1.1.7)的基因结构和表达等方面的研究进展进行了综述。分析了昆虫乙酰胆碱酯酶基因的结构,包括10个外显子的特征。对已经报道的昆虫AChE基因进行了系统归纳,并基于已知全序列的昆虫AChE基因,进行了昆虫AChE基因的分子进化分析。对昆虫AChE基因的结构特点及其功能,以及昆虫AChE基因的活性位点、AChE的变构与昆虫抗药性的关系进行了探讨。最后对昆虫AChE基因研究中存在的问题和前景进行了分析和展望。  相似文献   

3.
同源异形盒基因(homeobox genes)是一类具有180 bp保守序列的基因,在生物发育的调控中起着重要作用。昆虫幼虫的腹足在位置和数目上均表现出丰富的多样性,使其成为进化发育生物学研究的主要对象之一。通过对昆虫幼虫腹足发育过程中相关同源异形盒基因的研究,既可了解腹足的发育机制,又可加深对同源异形盒基因进化和功能的理解。本文简要介绍同源异形盒基因的概况,重点总结了同源异形盒基因在昆虫幼虫腹足发育方面的研究进展,包括通过相关同源异形盒基因时空表达模式来揭示腹足的附肢起源、腹足发育的调控通路中相关同源异形盒基因的功能和进化等,尤其是腹部Hox家族基因对Distal-less基因的抑制作用及其在不同昆虫类群中的进化,以及该领域目前存在的主要争议,期望为相关研究提供参考。  相似文献   

4.
昆虫miRNA研究进展   总被引:1,自引:0,他引:1  
微小RNA(microRNA, miRNA)广泛存在于不同的生物体内,是一类长度为19~24 nt的内源性单链非编码小RNA,主要通过其种子区域与靶基因的开放阅读框(open reading frame, ORF)和3′非翻译区(untranslated region, UTR)进行结合,进而在转录后水平调控基因表达,miRNA在细胞分化、增殖、凋亡等多种生物学过程中均起着重要作用。随着miRNA逐渐成为生命科学研究的热点,其在昆虫中的研究也不断深入并取得了较大进展,高通量测序技术以及生物信息学的发展加快了各个物种中miRNA的鉴定,为后续miRNA相关研究提供了理论基础。直接克隆、生物信息学预测以及高通量测序都可以对不同物种中的miRNA进行鉴定,并通过miRNA基因芯片分析、Northern blot及实时荧光定量PCR(RT qPCR)检测miRNA表达水平,对其进行抑制表达或过表达可以进一步揭示miRNA的生物功能。miRNA通过参与蜕皮激素通路及调节蜕皮激素受体、性别分化、翅发育、脂质代谢和卵巢发育等相关基因的表达对昆虫的生长发育和生殖过程产生重要影响。某些昆虫的昼夜节律、记忆形成、学习能力等行为过程也不乏miRNA参与。在病毒与昆虫互作过程中,一些病毒编码的miRNA通过调节宿主基因表达,干扰宿主昆虫对病毒的免疫反应,而昆虫编码的miRNA则可以影响病毒复制。昆虫miRNA也可以通过调节自身免疫相关基因的表达,影响其先天免疫功能,在昆虫对外源病原物的免疫反应中发挥重要作用。此外,昆虫miRNA通过负向调控解毒相关基因的表达而形成或增强杀虫剂抗性,改变对农药的敏感性,在昆虫抗药性中发挥作用。本综述为进一步了解昆虫miRNA提供了理论基础,也为其在害虫综合治理中的应用提供依据。  相似文献   

5.
社会性昆虫级型和行为分化机制研究进展   总被引:1,自引:0,他引:1  
张慧  刘倩  黄晓磊 《生物多样性》2021,29(4):507-4231
社会性的出现是生物演化过程中的重要革新, 理解社会性的演化和调控机制具有重要的理论和实际意义。社会性昆虫的个体间有着明显的级型分化和劳动分工, 这有利于它们适应复杂的环境变化。理解社会性昆虫如何产生不同的形态、行为和生活史特性, 一直是进化和发育生物学的重要目标。随着测序技术的不断更新及生物信息学的快速发展, 已经有众多关于社会性昆虫级型和行为分化机制的研究报道。本文通过整理社会性昆虫研究的已有成果, 从环境因素、生理调控和分子机制等方面对社会性昆虫级型和行为分化机制相关研究进展进行了综述, 并对未来的研究方向做出了展望。根据现有证据, 社会性昆虫所生活的生物环境(食物营养、信息素、表皮碳氢化合物)和非生物环境(温度、气候等)均能直接或间接影响社会性昆虫级型和行为的分化; 保幼激素、蜕皮激素、类胰岛素及生物胺等内分泌激素和神经激素对社会性昆虫的级型和行为分化也有重要的调控作用; 此外, 遗传因素、新基因等DNA序列或基因组结构上的变化以及表观遗传修饰、基因的差异表达等基因调控机制均能不同程度地影响社会性昆虫的行为分化。本文建议加强昆虫纲其他社会性类群如半翅目蚜虫和缨翅目蓟马等的社会性行为及其演化机制的研究, 以加深对社会性昆虫起源及其行为演化的理解和认识。  相似文献   

6.
昆虫抗药性分子机制研究的新进展   总被引:1,自引:0,他引:1  
昆虫抗性机制的研究对于抗性监测、治理及新农药的研制具有重要意义。在过去几十年中,人们对与昆虫杀虫剂抗性有关的昆虫行为、生理代谢活动以及作用靶标等进行了广泛的研究。已经证实,昆虫的抗药性与行为改变、生理功能改变、解毒功能增强以及靶标不敏感性有关。近年来,随着分子生物学以及昆虫基因组学的发展,昆虫抗药性的分子机理有了突破性进展,已发现并克隆了一些靶标基因,与抗药性相关的基因突变也得到广泛验证。本文综述了昆虫的抗药性机理在分子生物学上的研究最新进展,重点阐述了与昆虫抗性相关基因的扩增、表达及基因结构的改变等相关内容。  相似文献   

7.
昆虫体色分化研究进展   总被引:14,自引:7,他引:7  
昆虫体色分化现象在自然界中普遍存在,它给昆虫的分类等工作带来了不便。文章介绍了寄主专化论、环境因素控制论、基因控制论等有关昆虫体色分化机理的3个不同观点,着重从染色体和基因方面介绍了昆虫体色分化的研究,以及分子标记技术在其研究中的应用,并对昆虫体色分化的研究方向进行了展望。  相似文献   

8.
童晓玲  方春燕  盖停停  石津  鲁成  代方银 《遗传》2018,40(4):266-278
CRISPR/Cas9(clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9)技术是一种RNA引导的基因组靶向编辑技术,能对基因组序列进行精确编辑,在探究基因功能、修复受损基因、沉默有害基因、改良品质性状等方面具有广阔的应用前景。近年来,随着对CRISPR/Cas9系统研究的不断深入和改造,该系统以其操作简易、省时、高效等优点在生物学研究的众多领域中得以推广和应用,特别是在果蝇(Bombyx mori)、家蚕(silkworm)、埃及伊蚊(Aedes aegypti)和蝴蝶(butterfly)等多种昆虫中。本文概述了CRISPR/Cas9的结构、作用原理及发展优化,总结了CRISPR/Cas9导入昆虫的策略和在昆虫中的应用,以及对CRISPR/Cas9系统产生脱靶问题的应对策略,以期对经济昆虫和有益昆虫的分子育种、害虫的生物技术防控等研究提供参考。  相似文献   

9.
刘永平  杨静  刘蕴 《昆虫学报》2013,56(9):1026-1037
MicroRNA (miRNA)是20世纪90年代发现的一类由内源基因编码的长度约21~24 nt的非编码单链RNA分子, 广泛存在于真核生物中, 对基因的转录后调控起着非常重要的作用。本文简要介绍了miRNA的产生与调控机制, 同时从昆虫miRNA的发现鉴定、 靶基因预测与功能验证, 昆虫miRNA的序列特征与进化, 果蝇和非果蝇类昆虫miRNA生物学功能以及供昆虫miRNA研究的网络平台等方面对昆虫miRNA的最新进展进行了综述, 旨在为进一步研究昆虫miRNA提供借鉴和参考。对昆虫miRNA的研究表明其参与调控细胞分化、 增殖及凋亡、 胚胎发育、 器官发生、 形态构建、 生理代谢、 环境协调、 行为认知、 免疫防御等几乎所有的生物过程。因此, 深入研究其生物功能、 调控网络和开发应用等可能成为今后一段时间昆虫miRNA研究的重要内容。  相似文献   

10.
COⅡ基因在昆虫分子系统学研究中的作用和地位   总被引:21,自引:5,他引:16  
卜云  郑哲民 《昆虫知识》2005,42(1):18-22
细胞色素氧化酶Ⅱ(cytochromeoxidaseⅡ,COⅡ)基因位于线粒体DNA(mtDNA)上,编码细胞色素氧化酶亚基Ⅱ,该亚基为细胞色素c提供重要的结合位点。COⅡ基因进化速率较快,是昆虫分子系统学研究中理想的分子标记。目前,已经利用该基因从各个分类水平对昆虫系统发育关系、物种形成与分化、种群遗传与变异及生物地理等方面做了广泛的研究。研究表明,利用该基因可以很好地解决昆虫属、种及种下分类单元的系统发育问题,但是在解决科、亚科等高级阶元的系统发育关系时仍存在一些局限,COⅡ基因与其他mtDNA及核基因的联合分析能够更好地解决昆虫的系统发育问题。  相似文献   

11.
王珊  那宇鹤  冷雪  那杰 《昆虫知识》2010,47(4):652-656
昆虫的听器是一类对声波具有特异感受作用的器官,对其生存具有非常重要的意义。昆虫的听器主要有听觉毛、江氏器和鼓膜听器3种类型。本文主要介绍了昆虫3种听器的结构和功能特点,并从系统发生和个体发育角度介绍了鼓膜听器的演化过程。  相似文献   

12.
Reduction of tympanal hearing organs is repeatedly found amongst insects and is associated with weakened selection for hearing. There is also an associated wing reduction, since flight is no longer required to evade bats. Wing reduction may also affect sound production. Here, the auditory system in four silent grasshopper species belonging to the Podismini is investigated. In this group, tympanal ears occur but sound signalling does not. The tympanal organs range from fully developed to remarkably reduced tympana. To evaluate the effects of tympanal regression on neuronal organisation and auditory sensitivity, the size of wings and tympana, sensory thresholds and sensory central projections are compared. Reduced tympanal size correlates with a higher auditory threshold. The threshold curves of all four species are tuned to low frequencies with a maximal sensitivity at 3–5 kHz. Central projections of the tympanal nerve show characteristics known from fully tympanate acridid species, so neural elements for tympanal hearing have been strongly conserved across these species. The results also confirm the correlation between reduction in auditory sensitivity and wing reduction. It is concluded that the auditory sensitivity of all four species may be maintained by stabilising selective forces, such as predation.  相似文献   

13.
Tympanate hearing has evolved in at least 6 different orders of insects, but had not been reported until recently in the Diptera. This study presents a newly discovered tympanal hearing organ, in the parasitoid tachinid fly, Ormia ochracea. The hearing organ is described in terms of external and internal morphology, cellular organization of the sensory organ and preliminary neuroanatomy of the primary auditory afferents. The ear is located on the frontal face of the prothorax, directly behind the head capsule. Conspicuously visible are a pair of thin cuticular membranes specialized for audition, the prosternal tympanal membranes. Directly attached to these membranes, within the enlarged prosternal chamber, are a pair of auditory sensory organs, the bulbae acusticae. These sensory organs are unique among all auditory organs known so far because both are contained within an unpartitioned acoustic chamber. The prosternal chamber is connected to the outside by a pair of tracheae. The cellular anatomy of the fly's scolopophorous organ was investigated by light and electron microscopy. The bulba acustica is a typical chordotonal organ and it contains approximately 70 receptor cells. It is similar to other insect sensory organs associated with tympanal ears. The similarity of the cellular organization and tympanal morphology of the ormiine ear to the ears of other tympanate insects suggests that there are potent constraints in the design features of tympanal hearing organs, which must function to detect high frequency auditory signals over long distances. Each sensory organ is innervated by a branch of the frontal nerve of the fused thoracic ganglia. The primary auditory afferents project to each of the pro-, meso-, and metathoracic neuropils. The fly's hearing organ is sexually dimorphic, whereby the tympanal membranes are larger in females and the spiracles larger in males. The dimorphism presumably reflects differences in the acoustic behavior in the two sexes.  相似文献   

14.
Tympanate hearing has evolved in at least 6 different orders of insects, but had not been reported until recently in the Diptera. This study presents a newly discovered tympanal hearing organ, in the parasitoid tachinid fly, Ormia ochracea. The hearing organ is described in terms of external and internal morphology, cellular organization of the sensory organ and preliminary neuroanatomy of the primary auditory afferents. The ear is located on the frontal face of the prothorax, directly behind the head capsule. Conspicuously visible are a pair of thin cuticular membranes specialized for audition, the prosternal tympanal membranes. Directly attached to these membranes, within the enlarged prosternal chamber, are a pair of auditory sensory organs, the bulbae acusticae. These sensory organs are unique among all auditory organs known so far because both are contained within an unpartitioned acoustic chamber. The prosternal chamber is connected to the outside by a pair of tracheae. The cellular anatomy of the fly's scolopophorous organ was investigated by light and electron microscopy. The bulba acustica is a typical chordotonal organ and it contains approximately 70 receptor cells. It is similar to other insect sensory organs associated with tympanal ears.The similarity of the cellular organization and tympanal morphology of the ormiine ear to the ears of other tympanate insects suggests that there are potent constraints in the design features of tympanal hearing organs, which must function to detect high frequency auditory signals over long distances. Each sensory organ is innervated by a branch of the frontal nerve of the fused thoracic ganglia. The primary auditory afferents project to each of the pro-, meso-, and metathoracic neuropils. The fly's hearing organ is sexually dimorphic, whereby the tympanal membranes are larger in females and the spiracles larger in males. The dimorphism presumably reflects differences in the acoustic behavior in the two sexes.  相似文献   

15.
Severe size constraints are imposed on the hearing organs of insects, yet they perform sophisticated tasks of auditory processing. Recent research has shown how flies acoustically locate targets in space, how mosquitoes afford highly sensitive ears, and how crickets avoid deafening themselves with their songs. These findings unveil the exquisite analytical capabilities of highly specialized microscale auditory systems.  相似文献   

16.
Sensitive hearing organs often employ nonlinear mechanical sound processing which generates distortion-product otoacoustic emissions (DPOAE). Such emissions are also recordable from tympanal organs of insects. In vertebrates (including humans), otoacoustic emissions are considered by-products of active sound amplification through specialized sensory receptor cells in the inner ear. Force generated by these cells primarily augments the displacement amplitude of the basilar membrane and thus increases auditory sensitivity. As in vertebrates, the emissions from insect ears are based on nonlinear mechanical properties of the sense organ. Apparently, to achieve maximum sensitivity, convergent evolutionary principles have been realized in the micromechanics of these hearing organs-although vertebrates and insects possess quite different types of receptor cells in their ears. Just as in vertebrates, otoacoustic emissions from insects ears are vulnerable and depend on an intact metabolism, but so far in tympanal organs, it is not clear if auditory nonlinearity is achieved by active motility of the sensory neurons or if passive cellular characteristics cause the nonlinear behavior. In the antennal ears of flies and mosquitoes, however, active vibrations of the flagellum have been demonstrated. Our review concentrates on experiments studying the tympanal organs of grasshoppers and moths; we show that their otoacoustic emissions are produced in a frequency-specific way and can be modified by electrical stimulation of the sensory cells. Even the simple ears of notodontid moths produce distinct emissions, although they have just one auditory neuron. At present it is still uncertain, both in vertebrates and in insects, if the nonlinear amplification so essential for sensitive sound processing is primarily due to motility of the somata of specialized sensory cells or to active movement of their (stereo-)cilia. We anticipate that further experiments with the relatively simple ears of insects will help answer these questions.  相似文献   

17.
人类听觉的基本特性和机制与其他哺乳动物相似,因此,利用动物所作的听觉研究和获得的结果,有助于认识人类自身的听觉.围绕听觉中枢神经元对不同模式的声信号的识别和处理,简要综述了这方面的研究.声信号和声模式识别在听觉中枢对声信号的感受和加工中具有重要意义.听神经元作为声模式识别的结构和功能基础,对不同的声刺激模式产生不同反应,甚至是在同一声刺激模式下,改变其中的某个声参数,神经元的反应也会发生相应改变,而其反应的特性和机制均需要更多研究来解答.另外,声信号作为声信息的载体,不同的声信息寓于不同的声参数和声特征之中,研究发现,听觉中枢神经元存在相应的声信息甄别和选择的神经基础,能对动态变化的声频率、幅度和时程等进行反应和编码,并且,在不同种类动物上获得的研究结果极为相似,表明听觉中枢对不同声信号和声刺激模式的识别、分析和加工,具有共同性和普遍性.  相似文献   

18.
弦音器是昆虫类特有的一种机械感受器,亦称弦音感受器或剑梢感受器。它主要具有感知外界声压和体内肌肉运动的听觉功能,研究弦音器的机能结构对揭秘昆虫听觉的神经机制有重要的科学意义。本文从弦音器多样性和进化入手,重点综述了弦音器的微细结构、基因功能定位、声音感受分子机制及其声压增幅分子生物物理学原理,为昆虫听觉仿生学的研究提供了理论依据。  相似文献   

19.
David D.  Yager 《Journal of Zoology》1990,221(4):517-537
Sexual dimorphism of tympanate auditory systems in insects has bees described in only a few taxonomically isolated cases. However, widespread sexual dimorphism occurs in the ultrasound-sensitive, midline ear of the praying mantis.
In dimorphic species, it is always the female mantis that shows a reduction in ultrasonic hearing. The dimorphism may be mild—a difference in tuning and small reduction in sensitivity—or extreme with no evidence of audition in the female. In all but the mildest cases, the reduction in hearing is accompanied by significant anatomical divergence from the male ear structure. Two distinct metathoracic groove ('ear') types are linked to hearing reduction in the females.
Anatomical evidence of auditory sexual dimorphism appears in 34% of the 183 mantis genera examined. The dimorphic genera are widely but non-uniformly distributed within three of the four largest mantis families.
Auditory sexual dimorphism is closely correlated with dimorphism in wing length. In general, mantises with functional wings have sensitive ultrasonic hearing while those with short wings do not. These findings support the hypothesis that ultrasonic hearing in mantises is part of a defensive system against attack by echolocating bats.  相似文献   

20.
弦音器是昆虫类特有的一种机械感受器,亦称弦音感受器或剑梢感受器。它主要具有感知外界声压和体内肌肉运动的听觉功能,研究弦音器的机能结构对揭秘昆虫听觉的神经机制有重要的科学意义。本文从弦音器多样性和进化入手,重点综述了弦音器的微细结构、基因功能定位、声音感受分子机制及其声压增幅分子生物物理学原理,为昆虫听觉仿生学的研究提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号