首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
2.
The endosperm is a seed tissue unique to flowering plants. Due to its central role in nourishing and protecting the embryo, endosperm development is subject to parental conflicts and adaptive processes, which led to the evolution of parent-of-origin-dependent gene regulation. The role of higher-order chromatin organization in regulating the endosperm genome was long ignored due to technical hindrance. We developed a combination of approaches to analyze nuclear structure and chromatin organization in Arabidopsis thaliana endosperm. Endosperm nuclei showed a less condensed chromatin than other types of nuclei and a peculiar heterochromatin organization, with smaller chromocenters and additional heterochromatic foci interspersed in euchromatin. This is accompanied by a redistribution of the heterochromatin mark H3K9me1 from chromocenters toward euchromatin and interspersed heterochromatin. Thus, endosperm nuclei have a specific nuclear architecture and organization, which we interpret as a relaxed chromocenter-loop model. The analysis of endosperm with altered parental genome dosage indicated that the additional heterochromatin may be predominantly of maternal origin, suggesting differential regulation of maternal and paternal genomes, possibly linked to genome dosage regulation.  相似文献   

3.
4.
We evaluated the contribution of in vivo histone acetylation to the folding of chromatin into its higher-order structures. We have compared high-order folding patterns of hyperacetylated vs. unmodified chromatin in living green monkey kidney cells (CV1 line) using intercalator chloroquine diphospate to induce alterations in the twist of internucleosomal linker DNA. We have shown that histone hyperacetylation induced by antibiotic Trichostatin A significantly alters intercalator-mediated chromatin folding pattern.  相似文献   

5.
Abstract

We have used the intercalative agent ethidium bromide to examine the association between chromatin high-order folding and the twist of internucleosomal DNA regions. The analysis was carried out on intact nuclei isolated from human HeLa S3 cells. Our data shows that alterations in the nucleosomal linker twist significantly influence the way in which a chain of nucleosomes folds to form different higher-order structures. The assay used allowed us to identify the existence of two chromatin fractions differing in their extent of high-order folding. We have also found that active gene sequences are preferentially associated with the chromatin fraction corresponding to the more extended conformation. A model is proposed to account for the effect of variations in the nucleosome linker twist on the state of chromatin folding.  相似文献   

6.
Genetic studies have identified residues in the structured regions of the histones that are critically involved in the formation of heterochromatin. Any investigation of the events that regulate access to the chromatin substrate must take into account the dynamic nature of the nucleosome, and the regulated inter-conversion between various levels of chromatin higher-order structure.  相似文献   

7.
Abstract

We evaluated the contribution of in vivo histone acetylation to the folding of chromatin into its higher-order structures. We have compared high-order folding patterns of hyperacetylat- ed vs. unmodified chromatin in living green monkey kidney cells (CV1 line) using intercalator chloroquine diphospate to induce alterations in the twist of internucleosomal linker DNA. We have shown that histone hyperacetylation induced by antibiotic Trichostatin A significantly alters intercalator-mediated chromatin folding pattern.  相似文献   

8.
Grigoryev SA 《FEBS letters》2004,564(1-2):4-8
Interphase eukaryotic nuclei contain diffuse euchromatin and condensed heterochromatin. Current textbook models suggest that chromatin condensation occurs via accordion-type compaction of nucleosome zigzag chains. Recent studies have revealed several structural aspects that distinguish the highly compact state of condensed heterochromatin. These include an extensive lateral self-association of chromatin fibers, prominent nucleosome linker 'stems', and special protein factors that promote chromatin self-association. Here I review the molecular and structural determinants of chromatin compaction and discuss how heterochromatin spreading may be mediated by lateral self-association of zigzag nucleosome arrays.  相似文献   

9.
Linker histone H1 is a major chromatin component that binds internucleosomal DNA and mediates the folding of nucleosomes into a higher-order structure, namely the 30-nm chromatin fiber. Multiple post-translational modifications (PTMs) of core histones H2A, H2B, H3 and H4 have been identified and their important contribution to the regulation of chromatin structure and function is firmly established. In contrast, little is known about histone H1 modifications and their function. Here we address this question in Drosophila melanogaster, which, in contrast to most eukaryotic species, contains a single histone H1 variant, dH1. For this purpose, we combined bottom-up and top-down mass-spectrometry strategies. Our results indicated that dH1 is extensively modified by phosphorylation, methylation, acetylation and ubiquitination, with most PTMs falling in the N-terminal domain. Interestingly, several dH1 N-terminal modifications have also been reported in specific human and/or mouse H1 variants, suggesting that they have conserved functions. In this regard, we also provide evidence for the contribution of one of such conserved PTMs, dimethylation of K27, to heterochromatin organization during mitosis. Furthermore, our results also identified multiple dH1 isoforms carrying several phosphorylations and/or methylations, illustrating the high structural heterogeneity of dH1. In particular, we identified several non-CDK sites at the N-terminal domain that appear to be hierarchically phosphorylated. This study provides the most comprehensive PTM characterization of any histone H1 variant to date.  相似文献   

10.
11.
We describe findings on the architecture of Drosophila melanogaster mitotic chromosomes, made using a three-dimensional-oriented structural approach. Using high-voltage and conventional transmission electron microscopy combined with axial tomography and digital contrast-enhancement techniques, we have for the first time visualized significant structural detail within minimally perturbed mitotic chromosomes. Chromosomes prepared by several different preparative procedures showed a consistent size hierarchy of discrete chromatin structural domains with cross-sectional diameters of 120, 240, 400-500, and 800-1,000 A. In fully condensed, metaphase-arrested chromosomes, there is evidence for even larger-scale structural organization in the range of 1,300-3,000-A size. The observed intrachromosomal arrangements of these higher-order structural domains show that both the radial loop and sequential helical coiling models of chromosome structure are over-simplifications of the true situation. Finally, our results suggest that the pathway of chromatin condensation through mitosis consists of concurrent changes occurring at several levels of chromatin organization, rather than a strictly sequential folding process.  相似文献   

12.
13.
In the field vole, Microtus agrestis, most of the constitutive heterochromatin is localized in the giant chromosomes. A detailed examination of a large number of adult cell types reveals that this chromatin is actually present as a heterochromatic fiber in all interphase nuclei. Depending upon the cell types, however, the fiber shows varying degrees of condensation and folding ranging from a very long and extended fiber to a large compact chromocenter. The number of cell types with giant chromocenters was less commonly observed than those with extended fibers. This explains why some cells were previously thought to be devoid of heterochromatin.—The results of this investigation strongly indicate that constitutive heterochromatin represents a unique nuclear entity.This investigation was supported by NIH funds (Grant No. HD 1962).  相似文献   

14.
15.
We have investigated the presence of higher-order chromatin structures in different maize tissues. Taking advantage of the pulsed-field gel electrophoresis technique to analyse large DNA fragments from intact nuclei and cells, we have determined the size distribution of the high-molecular-weight DNA fragments obtained from chromatin degradation by endogenous nucleases in isolated nuclei. Chromatin digestion leads to the appearance of stable DNA fragments of about 50 kb in all the tissues examined, suggesting the folding of DNA in higher-order chromatin domain structures. It has been reported that such chromatin domains are formed by loops of the 30 nm fibres anchored to the nuclear matrix by a complex set of proteins, including DNA topoisomerase II. Treatment of maize protoplasts with the calcium ionophore A23187 and the antitumour drug VM-26, which specifically inhibit the religation of the cleaved DNA in the topoisomerase II reaction, also produces the 50 kb structure. Analysis of the DNA contained in the 50 kb chromatin structure shows a higher degree of methylation than in bulk maize chromosomal DNA. The role of methylated DNA in the chromatin folding is discussed.  相似文献   

16.
17.
Lam AL  Pazin DE  Sullivan BA 《Chromosoma》2005,114(4):242-251
Epigenetic regulation of higher-order chromatin structure controls gene expression and the assembly of chromosomal domains during cell division, differentiation, and development. The proposed “histone code” integrates a complex system of histone modifications and chromosomal proteins that establish and maintain distinctive types of chromatin, such as euchromatin, heterochromatin, and centromeric (CEN) chromatin. The reversible nature of histone acetylation, phosphorylation, and (most recently discovered) methylation are mechanisms for controlling gene expression and partitioning the genome into functional domains. Many different regions of the genome contain similar epigenetic marks (histone modifications), raising the question as to how they are independently specified and regulated. In this review, we will focus on several recent discoveries in chromatin and chromosome biology: (1) identification of long-elusive histone “de-methylating” enzymes that affect chromatin structure, and (2) assembly and maintenance of chromatin domains, specifically heterochromatin and euchromatin, through a dynamic equilibrium of modifying enzymes, histone modifications, and histone variants identified biochemically and genetically. Review related to the 15th International Chromosome Conference (ICC XV), held in September 2004, Brunel University, London, UK  相似文献   

18.
Higher-order chromatin structural domains approximately 130 nm in width are observed as prominent components of both Drosophila melanogaster and human mitotic chromosomes using buffer conditions which preserve chromosome morphology as determined by light microscopic comparison with chromosomes within living cells. Spatially discrete chromatin structural domains of similar size also exist as prominent components within interphase nuclei prepared under equivalent conditions. Examination of chromosomes during the anaphase-telophase transition suggests that chromosomes decondense largely through the progressive straightening or uncoiling of these large-scale chromatin domains. A quantitative analysis of the size distribution of these higher-order domains in telophase nuclei indicated a mean width of 126±36 nm. Three-dimensional views using stereopairs of chromosomes and interphase nuclei from 0.5 m thick sections suggest that these large-scale chromatin domains consist of 30 nm fibers packed by tight folding into larger, linear, fiber-like elements. Reduction in vitro of either polyamine or divalent cation concentrations within two different buffer systems results in a loss of these large-scale domains, with no higher-order chromatin organization evident above the 20–30 nm fiber. Under these conditions the DNA distribution within mitotic chromosomes and interphase nuclei appears significantly diffuse relative to the appearance by light microscopy within living cells, or, by electron microscopy, within cells fixed directly without permeabilization in buffer. These results suggest that these large-scale chromatin structural domains are fundamental elements of chromosome architecture in vivo.  相似文献   

19.
Heterochromatin protein-1 (HP1) plays an essential role in both the assembly of higher-order chromatin structure and epigenetic inheritance. The C-terminal chromo shadow domain (CSD) of HP1 is responsible for homodimerization and interaction with a number of chromatin-associated nonhistone proteins, including EMSY, which is a BRCA2-interacting protein that has been implicated in the development of breast and ovarian cancer. We have determined the crystal structure of the HP1beta CSD in complex with the N-terminal domain of EMSY at 1.8 A resolution. Surprisingly, the structure reveals that EMSY is bound by two HP1 CSD homodimers, and the binding sequences differ from the consensus HP1 binding motif PXVXL. This structural information expands our understanding of HP1 binding specificity and provides insights into interactions between HP1 homodimers that are likely to be important for heterochromatin formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号