首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Although recombinant adenovirus vectors are attractive for use in gene expression studies and therapeutic applications, the construction of these vectors remains relatively time-consuming. We report here a strategy that simplifies the production of adenoviruses using the Cre-loxP system. MATERIALS AND METHODS: Full-length recombinant adenovirus DNA was generated in vitro by Cre-mediated recombination between loxP sites in a linearized shuttle plasmid containing a transgene and adenovirus genomic DNA. RESULTS: After transfection of Cre-treated DNA into 293 cells, replication-defective viral vectors were rapidly obtained without detectable wild-type virus. CONCLUSION: This system facilitates the development of recombinant adenoviral vectors for basic and clinical research.  相似文献   

2.
We have constructed replication-defective human adenovirus (Ad) type 5 vectors containing the gene for the Cre recombinase from bacteriophage P1 under control of the human cytomegalovirus immediate-early promoter (AdCre). Expression of the protein was detected in replication-permissive (293) and in nonpermissive (MRC5) cell lines, and its biochemical activity was demonstrated in a cell-free recombination assay using a plasmid containing two loxP sites. To study Cre-mediated recombination in an intracellular system, we constructed an Ad vector (AdMA19) containing the luciferase cDNA under control of the human cytomegalovirus promoter but separated from it by an extraneous spacer sequence flanked by loxP sites which blocked luciferase expression. Upon coinfection of 293 or MRC5 cells with AdMA19 and AdCre, luciferase expression was specifically induced by Cre-mediated excision of the intervening sequence. The use of Ad vectors combined with the Cre-loxP system for regulation of gene expression and other possible applications is discussed.  相似文献   

3.
To expand the utility of recombinant adenovirus vectors for gene therapy applications, methods to alter native viral tropism to achieve cell-specific transduction would be beneficial. To this end, we are pursuing genetic methods to alter the cell recognition domain of the adenovirus fiber. To incorporate these modified fibers into mature virions, we have developed a method based on homologous DNA recombination between two plasmids. A fiber-deleted, propagation-defective rescue plasmid has been designed for recombination with a shuttle plasmid encoding a variant fiber gene. Recombination between the two plasmids results in the derivation of recombinant viruses containing the variant fiber gene. To establish the utility of this method, we constructed a recombinant adenovirus containing a fiber gene with a silent mutation. In addition, we generated an adenovirus vector containing chimeric fibers composed of the tail and shaft domains of adenovirus serotype 5 and the knob domain of serotype 3. This modification was shown to alter the receptor recognition profile of the virus containing the fiber chimera. Thus, this two-plasmid system allows for the generation of adenovirus vectors containing variant fibers. This method provides a rapid and facile means of generating fiber-modified recombinant adenoviruses. In addition, it should be possible to use this system in the development of adenovirus vectors with modified tropism to allow cell-specific targeting.  相似文献   

4.
R W Siegel  R Jain  A Bradbury 《FEBS letters》2001,499(1-2):147-153
The site-specific recombination system of bacteriophage P1 is composed of the Cre recombinase that recognizes a 34-bp loxP site. The Cre/loxP system has been extensively used to manipulate eukaryotic genomes for functional genomic investigations. The creation of additional heterologous loxP sequences potentially expands the utility of this system, but only if these loxP sequences do not recombine with one another. We have developed a stringent in vivo assay to examine the degree of recombination between all combinations of each previously published heterologous loxP sequence. As expected, homologous loxP sequences efficiently underwent Cre-mediated recombination. However, many of the heterologous loxP pairs were able to support recombination with rates varying from 5 to 100%. Some of these loxP sequences have previously been reported to be non-compatible with one another. Our study also confirmed other heterologous loxP pairs that had previously been shown to be non-compatible, as well as defined additional combinations that could be used in designing new recombination vectors.  相似文献   

5.
Siegel RW  Jain R  Bradbury A 《FEBS letters》2001,505(3):467-473
The site-specific recombination system of bacteriophage P1 is composed of the Cre recombinase that recognizes a 34-bp loxP site. The Cre/loxP system has been extensively used to manipulate eukaryotic genomes for functional genomic investigations. The creation of additional heterologous loxP sequences potentially expands the utility of this system, but only if these loxP sequences do not recombine with one another. We have developed a stringent in vivo assay to examine the degree of recombination between all combinations of each previously published heterologous loxP sequence. As expected, homologous loxP sequences efficiently underwent Cre-mediated recombination. However, many of the heterologous loxP pairs were able to support recombination with rates varying from 5 to 100%. Some of these loxP sequences have previously been reported to be non-compatible with one another. Our study also confirmed other heterologous loxP pairs that had previously been shown to be non-compatible, as well as defined additional combinations that could be used in designing new recombination vectors.  相似文献   

6.
EBV episomes are nuclear plasmids that are stably maintained through multiple cell divisions in primate and canine cells (J. L. Yates, N. Warren, and B. Sugden, Nature 313:812-815, 1985). In this report, we describe the construction and characterization of an E1-deleted recombinant adenovirus vector system that delivers an EBV episome to infected cells. This adenovirus-EBV hybrid vector system utilizes Cre-mediated, site-specific recombination to excise an EBV episome from a target recombinant adenovirus genome. We demonstrate that this vector system efficiently delivers the EBV episome and stably transforms a large fraction of infected canine D-17 cells. Using a colony-forming assay, we demonstrate stable transformation of 37% of cells that survive the infection. However, maximal transformation efficiency is achieved at doses of the E1-deleted recombinant adenoviruses that are toxic to the infected cells. Consequently, E1-deleted vector toxicity imposes a limitation on our current vector system.  相似文献   

7.
Conditional Cre-mediated recombination has emerged as a robust method of introducing somatic genetic alterations in an organ-specific manner in the mouse. Here, we generated and characterized mice harboring a 4-hydroxytamoxifen (OHT)-inducible Cre recombinase-estrogen receptor fusion transgene under the control of the melanocyte-specific tyrosinase promoter, designated Tyr::CreER(T2). Cre-mediated recombination was induced in melanocytes in a spatially and temporally controlled manner upon administration of OHT and was documented in embryonic melanoblasts, follicular bulb melanocytes, dermal dendritic melanocytes, epidermal melanocytes of tail skin, and in putative melanocyte stem cells located within the follicular bulge. Functional evidence suggestive of recombination in follicular melanocyte stem cells included the presence of Cre-mediated recombination in follicular bulb melanocytes 1 year after topical OHT administration, by which time several hair cycles have elapsed and the melanocytes residing in this location have undergone multiple rounds of apoptosis and replenishment. These Tyr:: CreER(T2) transgenic mice represent a useful resource for the evaluation of melanocyte developmental genetics, the characterization of melanocyte stem cell function and dynamics, and the construction of refined mouse models of malignant melanoma.  相似文献   

8.
Conditional alleles containing LoxP recombination sites, in conjunction with Cre recombinase delivered by a variety of means, allows for spatial and temporal control of gene expression in mouse models. Here we describe a mouse strain in which a luciferase (Luc) cDNA, preceded by a LoxP-stop-LoxP (L-S-L) cassette, was introduced into the ubiquitously expressed ROSA26 locus. Mouse embryo fibroblasts derived from this strain expressed luciferase after Cre-mediated recombination in vitro. ROSA26 L-S-L-Luc/+ mice expressed luciferase in a diffuse or liver-restricted pattern, as determined by noninvasive, bioluminescent imaging, when crossed to transgenic mice in which Cre was under the control of a zygotically expressed (EIIA-Cre), or a liver-restricted (albumin-Cre), promoter, respectively. Organ-specific luciferase expression was also seen after intraparenchymal administration of an adenovirus encoding Cre. The ROSA26 L-S-L-Luc/+ strain should be useful for characterizing Cre mouse strains and for following the fate of cells that have undergone Cre-mediated recombination in vivo.  相似文献   

9.
Construction of adenoviral vectors   总被引:12,自引:0,他引:12  
Recombinant adenovirus vectors have proven to be useful tools in facilitating gene transfer. Construction of such vectors requires a knowledge of the adenovirus genome structure and its life cycle. A commonly used recombinant adenovirus involves deletion of the E1 region; such a recombinant is traditionally produced by overlap recombination after contransfection of 293 cells with a plasmid shuttle vector and a large right-end restriction fragment of viral DNA. The shuttle vector contains a cassette for a transgene placed in region E1 and flanking sequences from adenovirus for recombination. Normally, a high background of parental virus results because of the difficulty in separating right-end restriction fragment length DNA from uncut DNA. This paper describes a negative selection based on the traditional cotransfection method using viral DNA from an E1-deleted adenoviral recombinant that expresses green fluorescent protein (GFP). In situ fluorescent microscopy is used to distinguish the recombinant plaques (white or nonfluorescent) from the parental virus plaques (green or fluorescent). In addition, this system allows for the detection of contaminating parental virus at later stages when production lots of the recombinant vector are being made.  相似文献   

10.
Construction of adenovirus vectors through Cre-lox recombination.   总被引:19,自引:0,他引:19       下载免费PDF全文
Two barriers prevent adenovirus-based vectors from having wide application. One is the difficulty of making new adenoviruses, and the second is the strong immunological reaction to viral proteins. Here we describe uses of Cre-lox recombination to overcome these problems. First, we demonstrate a simple method for constructing E1-substituted adenoviruses. Second, we demonstrate a method to construct adenovirus vectors carrying recombinant genes in place of all of the viral genes, so-called gutless adenovirus vectors. The pivotal feature in each method is the use of a negatively selected adenovirus named psi5. We engineered a cis-acting selection into psi5 by flanking its packaging site with loxP sites. When psi5 was grown in cells making a high level of Cre recombinase, the packaging site was deleted by recombination and the yield of psi5 was reduced to 5% of the wild-type level. To make a new E1-substituted virus, we used psi5 as a donor virus and recombined it with a shuttle vector via a loxP site. The resulting recombinant virus has a single loxP site next to the packaging site and therefore outgrows psi5 in the presence of Cre recombinase. To make a gutless virus, we used psi5 as a helper virus. The only viral sequences included in the gutless vector are those needed in cis for its replication and packaging. We found that a loxP site next to the packaging site of the gutless virus was necessary to neutralize homologous recombination between psi5 and the gutless viruses within their packaging domains.  相似文献   

11.
The ability to express exogenous cDNAs while suppressing endogenous genes via RNAi represents an extremely powerful research tool with the most efficient non-transient approach being accomplished through stable viral vector integration. Unfortunately, since traditional restriction enzyme based methods for constructing such vectors are sequence dependent, their construction is often difficult and not amenable to mass production. Here we describe a non-sequence dependent Gateway recombination cloning system for the rapid production of novel lentiviral (pLEG) and retroviral (pREG) vectors. Using this system to recombine 3 or 4 modular plasmid components it is possible to generate viral vectors expressing cDNAs with or without inhibitory RNAs (shRNAmirs). In addition, we demonstrate a method to rapidly produce and triage novel shRNAmirs for use with this system. Once strong candidate shRNAmirs have been identified they may be linked together in tandem to knockdown expression of multiple targets simultaneously or to improve the knockdown of a single target. Here we demonstrate that these recombinant vectors are able to express cDNA and effectively knockdown protein expression using both cell culture and animal model systems.  相似文献   

12.
Feasibility of chromosomal manipulation in mammalian cells was first reported 15 years ago. Although this technique is useful for precise understanding of gene regulation in the chromosomal context, a limited number of laboratories have used it in actual practice because of associated technical difficulties. To overcome the practical hurdles, we developed a Cre-mediated chromosomal recombination system using fluorescent proteins and various site-specific recombinases. These techniques enabled quick construction of targeting vectors, easy identification of chromosome-rearranged cells, and rearrangement leaving minimum artificial elements at junctions. Applying this system to a human cell line, we successfully recapitulated two types of pathogenic chromosomal translocations in human diseases: MYC/IgH and BCR/ABL1. By inducing recombination between two loxP sites targeted into the same chromosome, we could mark cells harboring deletion or duplication of the inter-loxP segments with different colors of fluorescence. In addition, we demonstrated that the intrachromosomal recombination frequency is inversely proportional to the distance between two recombination sites, implicating a future application of this frequency as a proximity sensor. Our method of chromosomal manipulation can be employed for particular cell types in which gene targeting is possible (e.g. embryonic stem cells). Experimental use of this system would open up new horizons in genome biology, including the establishment of cellular and animal models of diseases caused by translocations and copy-number variations.  相似文献   

13.
Continued improvements of adenoviral vectors require the investigation of novel genome configurations. Since adenovirus can be generated directly by transfecting packaging cell lines with viral genomes isolated from plasmid DNA, it is possible to separate genome construction from virus production. In this way failure to generate a virus is not associated with an inability to generate the desired genome. We have developed a novel lambda-based system that allows rapid modification of the viral genome by double homologous recombination in Escherichia coli. The recombination reaction and newly generated genome may reside in a recombination-deficient bacterial host for enhanced plasmid stability. Furthermore, the process is independent of any restriction endonucleases. The strategy relies on four main steps: (i) homologous recombination between an adenovirus cosmid and a donor plasmid (the donor plasmid carries the desired modification[s] and flanking regions of homology to direct its recombination into the viral genome); (ii) in vivo packaging of the recombinant adenoviral cosmids during a productive lambda infection; (iii) transducing a recombination-deficient E. coli lambda lysogen with the generated lysate (the lysogen inhibits the helper phage used to package the recombinant andenoviral cosmid from productively infecting and destroying the host bacteria); (iv) effectively selecting for the desired double-recombinant cosmid. Approximately 10,000 double-recombinant cosmids are recovered per reaction with essentially all of them being the correct double-recombinant molecule. This system was used to generate quickly and efficiently adenoviral genomes deficient in the E1/E3 and E1/E3/E4 regions. The basis of this technology allows any region of the viral genome to be readily modified for investigation of novel configurations.  相似文献   

14.
腺病毒载体在疫苗研究中的应用   总被引:1,自引:0,他引:1  
以病毒为载体的活疫苗为疾病预防和治疗研究提供了新手段。目前用于疫苗研究的病毒载体主要包括痘苗病毒载体、腺病毒载体、腺相关病毒载体、单纯疱疹病毒载体及逆转录病毒载体等。其中,重组腺病毒载体因其基因组大小适中,易于基因重组操作,繁殖滴度高,易于大量制备和保存,宿主范围广,转导效率高,安全性好,能刺激机体产生强烈的体液和细胞免疫反应等特点,而被广泛应用于重要感染性疾病及恶性肿瘤的疫苗研究。腺病毒载体在人免疫缺陷病毒(HIV)疫苗研究和临床试验中的成败更是备受关注。然而,与其他载体疫苗一样,机体对载体的免疫反应仍是阻碍腺病毒载体疫苗在临床中广泛应用的主要问题。那么,腺病毒载体解决这类问题的优势何在?我们简要综述腺病毒载体的特点及其在疫苗研究中的应用和存在的问题,为进一步优化和利用腺病毒载体在疫苗方面的研究提供参考。  相似文献   

15.
Short hairpin RNA (shRNA) encoded within an expression vector is an effective tool for exploration of gene function in mammalian cells. Many of the current methods for constructing shRNA expression vectors require cumbersome and time-consuming procedures for identification of the desired recombinants. We have developed a highly efficient and less labor-intensive cloning method that allows the construction of shRNA expression vectors in one day and with minimal effort. This advanced blue-white screening technique was developed by combining the reconstitution of ideal lacO with TA cloning. The DNAs are simply ligated into the destination vectors and, following transformation, a desired recombinant event will give a typical blue colony. In addition, we have used this cloning method for the construction of targeting reporter expression vectors to measure the efficacy of the corresponding shRNA. We constructed 122 functional shRNA expression vectors and sequencing of the positive cloning vectors confirmed a high degree of accuracy. Only three short DNA primers are needed for constructing both shRNA and targeting reporter expression vectors. This advanced blue-white screening system is a powerful tool for the high-throughput assay of RNAi libraries.  相似文献   

16.
Bernt K  Liang M  Ye X  Ni S  Li ZY  Ye SL  Hu F  Lieber A 《Journal of virology》2002,76(21):10994-11002
We have developed a new class of adenovirus vectors that selectively replicate in tumor cells. The vector design is based on our recent observation that a variety of human tumor cell lines support DNA replication of adenovirus vectors with deletions of the E1A and E1B genes, whereas primary human cells or mouse liver cells in vivo do not. On the basis of this tumor-selective replication, we developed an adenovirus system that utilizes homologous recombination between inverted repeats to mediate precise rearrangements within the viral genome resulting in replication-dependent activation of transgene expression in tumors (Ad.IR vectors). Here, we used this system to achieve tumor-specific expression of adenoviral wild-type E1A in order to enhance viral DNA replication and spread within tumor metastases. In vitro DNA replication and cytotoxicity studies demonstrated that the mechanism of E1A-enhanced replication of Ad.IR-E1A vectors is efficiently and specifically activated in tumor cells, but not in nontransformed human cells. Systemic application of the Ad.IR-E1A vector into animals with liver metastases achieved transgene expression exclusively in tumors. The number of transgene-expressing tumor cells within metastases increased over time, indicating viral spread. Furthermore, the Ad.IR-E1A vector demonstrated antitumor efficacy in subcutaneous and metastatic models. These new Ad.IR-E1A vectors combine elements that allow for tumor-specific transgene expression, efficient viral replication, and spread in liver metastases after systemic vector application.  相似文献   

17.
Weber T  Schönig K  Tews B  Bartsch D 《PloS one》2011,6(11):e28283
The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.  相似文献   

18.
The Cre-loxP system is widely used for making conditional alterations to the mouse genome. Cre-mediated recombination is frequently monitored using reporter lines in which Cre expression activates a reporter gene driven by a ubiquitous promoter. Given the distinct advantages of fluorescent reporters, we developed a transgenic reporter line, termed IRG, in which DsRed-Express, a red fluorescent protein (RFP) is expressed ubiquitously prior to Cre-mediated recombination and an enhanced green fluorescent protein (EGFP) following recombination. Besides their utility for monitoring Cre-mediated recombination, we show that in IRG mice red and green native fluorescence can be imaged simultaneously in thick tissue sections by confocal microscopy allowing for complex reconstructions to be created that are suitable for analysis of neuronal morphologies as well as neurovascular interactions in brain. IRG mice should provide a versatile tool for analyzing complex cellular relationships in both neural and nonneural tissues.  相似文献   

19.
Construction of avian adenovirus CELO recombinants in cosmids   总被引:10,自引:0,他引:10       下载免费PDF全文
The avian adenovirus CELO is a promising vector for gene transfer applications. In order to study this potentiality, we developed an improved method for construction of adenovirus vectors in cosmids that was used to engineer the CELO genome. For all the recombinant viruses constructed by this method, the ability to produce infectious particles and the stability of the genome were evaluated in a chicken hepatocarcinoma cell line (LMH cell line). Our aim was to develop a replication-competent vector for vaccination of chickens, so we first generated knockout point mutations into 16 of the 22 unassigned CELO open reading frames (ORFs) to determine if they were essential for virus replication. As the 16 independent mutant viruses replicated in our cellular system, we constructed CELO genomes with various deletions in the regions of these nonessential ORFs. An expression cassette coding for the enhanced green fluorescent protein (eGFP) was inserted in place of these deletions to easily follow expression of the transgene and propagation of the vector in cell monolayers. Height-distinct GFP-expressing CELO vectors were produced that were all replication competent in our system. We then retained the vector backbone with the largest deletion (i.e., 3.6 kb) for the construction of vectors carrying cDNA encoding infectious bursal disease virus proteins. These CELO vectors could be useful for vaccination in the chicken species.  相似文献   

20.
Studies in the structural biology of the multicomponent protein complex, metabolic engineering, and synthetic biology frequently rely on the efficient over-expression of these subunits or enzymes in the same cell. As a first step, constructing the multiple expression cassettes will be a complicated and time-consuming job if the classic and conventional digestion and ligation based cloning method is used. Some more efficient methods have been developed, including (1) the employment of a multiple compatible plasmid expression system, (2) the rare-cutter-based design of vectors, (3) in vitro recombination (sequence and ligation independent cloning, the isothermally enzymatic assembly of DNA molecules in a single reaction), and (4) in vivo recombination using recombination-efficient yeast (in vivo assembly of overlapping fragments, reiterative recombination for the chromosome integration of foreign expression cassettes). In this review, we systematically introduce these available methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号