首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Whereas the membrane-bound hydrogenase from Alcaligenes eutrophus H16 is an integral membrane protein and can only be solubilized by detergent treatment, the membrane-bound hydrogenase of Alcaligenes eutrophus type strain was found to be present in a soluble form after cell disruption. For the enzyme of A. eutrophus H16 a new, highly effective purification procedure was developed including phase separation with Triton X-114 and triazine dye chromatography on Procion Blue H-ERD-Sepharose. The purification led to an homogeneous hydrogenase preparation with a specific activity of 269 U/mg protein (methylene blue reduction) and a yield of 45%. During purification and storage the enzyme was optimally stabilized by the presence of 0.2 mM MnCl2. The hydrogenase of A. eutrophus type strain was purified from the soluble extract by a similar procedure, however, with less specific activity and activity yield. Comparison of the two purified enzymes revealed no significant differences: They have the same molecular weight, both consist of two different subunits (Mr = 62,000, 31,000) and both have an isoelectric point near pH 7.0. They have the same electron acceptor specificity reacting with similar high rates and similar Km values. The acceptors reduced include viologen dyes, flavins, quinones, cytochrome c, methylene blue, 2,6-dichlorophenolindophenol, phenazine methosulfate and ferricyanide. Ubiquinones and NAD were not reduced. The two hydrogenases were shown to be immunologically identical and both have identical electrophoretic mobility. For the membrane-bound hydrogenase of A. eutrophus H16 it was demonstrated that this type of hydrogenase in its solubilized, purified state is able to catalyze also the reverse reaction, the H2 evolution from reduced methyl viologen.  相似文献   

2.
Polyclonal, monospecific antibodies were produced against the two subunits (Mr 62,000, and Mr 31,000), isolated from the membrane-bound hydrogenase of Alcaligenes eutrophus H16. The antibodies (IgG fractions) were purified from crude sera by Protein A-Sepharose CL-4B chromatography. By double immunodiffusion assays and tandem-crossed immunoelectrophoresis the large and the small subunit were demonstrated not to be immunologically related. Immunological comparison of these subunits with the four non-identical subunits (Mr 63,000, 56,000, 30,000 and 26,000) of the NAD-linked, soluble hydrogenase from A. eutrophus H16 showed that the subunits of the membrane-bound hydrogenase did not cross-react with any of the antibodies raised against the four subunits of the NAD-linked enzyme and that, vice versa, none of these four subunits cross-reacted with antibodies raised against the two subunits of the membrane-bound hydrogenase. This means that A. eutrophus H16 contains altogether six non-identical immunologically unrelated hydrogenase polypeptides. The membrane-bound hydrogenases were isolated and purified from various aerobic H2-oxidizing bacteria: A. eutrophus H16, A. eutrophus type strain, A. eutrophus CH34, A. eutrophus Z1, A. hydrogenophilus, Paracoccus denitrificans and strain Cd2/01. All these proteins resembled each other and each consisted of two non-identical polypeptides. A complete separation of these subunits was achieved at high-yield by preparative FPLC gel filtration on three Superose 12 columns connected in series, using SDS and DTT-containing sodium phosphate buffer (pH 7.0). The small subunits of these enzymes turned out to be immunologically closely related to each other; they were either identical or almost identical. The large subunits were also related, but less pronounced. Only the large subunits from Z1 and type strain reacted fully identical with the H16 subunit. Of the two isolated, homogeneous subunits of the membrane-bound hydrogenase from A. eutrophus H16, the amino acid compositions and the NH2-terminal sequences have been determined. The results confirmed the diversity of the large and the small subunit. Furthermore, for comparison also the NH2-terminal sequences of the two subunits from the hydrogenase of A. eutrophus CH34 have been analysed.  相似文献   

3.
Genetics of hydrogenase from aerobic lithoautotrophic bacteria   总被引:4,自引:0,他引:4  
  相似文献   

4.
The membrane-bound hydrogenases of Bradyrhizobium japonicum, Alcaligenes eutrophus, Alcaligenes latus, and Azotobacter vinelandii were purified extensively and compared. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of each hydrogenase revealed two prominent protein bands, one near 60 kilodaltons and the other near 30 kilodaltons. The migration distances during nondenaturing polyacrylamide gel electrophoresis were similar for all except A. vinelandii hydrogenase, which migrated further than the other three. The amino acid composition of each hydrogenase was determined, revealing substantial similarity among these enzymes. This was confirmed by calculation of S delta Q values, which ranged from 8.0 to 26.7 S delta Q units. S delta Q is defined as sigma j(Xi,j-Xk,j)2, where i and k identify the proteins compared and Xj is the content (residues per 100) of a given amino acid of type j. The hydrogenases of this study were also compared with an enzyme-linked immunosorbent assay. Antibody raised against B. japonicum hydrogenase cross-reacted with all four hydrogenases, but to various degrees and in the order B. japonicum greater than A. latus greater than A. eutrophus greater than A. vinelandii. Antibody raised against A. eutrophus hydrogenase also cross-reacted with all four hydrogenases, following the pattern of cross-reaction A. eutrophus greater than A. latus = B. japonicum greater than A. vinelandii. Antibody raised against B. japonicum hydrogenase inhibited B. japonicum hydrogenase activity to a greater extent than the A. eutrophus and A. latus activities; no inhibition of A. vinelandii hydrogenase activity was detected. The results of these experiments indicated remarkable homology of the hydrogenases from these four microorganisms.  相似文献   

5.
Chemoautotrophic growth of Alcaligenes eutrophus 17707 is inhibited by 20% oxygen in the gas phase. Lowering the oxygen concentration to 4% results in chloramphenicol-sensitive derepression of soluble and membrane-bound hydrogenase activity (and of soluble hydrogenase antigen), showing that oxygen inhibition is due at least in part to repression of hydrogenase synthesis. Mutations resulting in derepression of hydrogenase activity (and antigen) under 25% oxygen (Ose-) mobilized with a self-transmissable plasmid which is already known to carry genes necessary for hydrogenase expression. Plasmid-borne mutations resulting in loss of soluble hydrogenase activity have no effect on the Ose phenotype, but chromosomal mutations resulting in reduction or loss of both hydrogenase activities cannot be made Ose-. The Ose- mutation does not alter the thermostability of either hydrogenase, and soluble hydrogenase in the mutant reacts with complete identity with that of the wild type, indicating that the Ose- phenotype does not result from structural alterations in either enzyme. Ose- mutants are also relieved of normal hydrogenase repression by organic substrates, which aggravates hydrogenase-mediated inhibition of heterotrophic growth by hydrogen. Regulation of hydrogenase in Ose- strains of A. eutrophus 17707 is nearly identical to that of wild-type A. eutrophus strains H1 and H16.  相似文献   

6.
Activation and active sites of nickel-containing hydrogenases   总被引:2,自引:0,他引:2  
Hydrogenases that contain nickel and iron-sulphur clusters also have a regulatory mechanism, by which exposure to oxidants such as oxygen prevents their reaction with hydrogen. Treatment with reducing agents then causes reactivation. In some hydrogenases from Desulfovibrio species, there is evidence that there are at least two different deactivated states, which differ in their rates of reductive reactivation. The membrane-bound hydrogenase of D. desulfuricans, Norway strain, the periplasmic hydrogenase of D. gigas and the membrane-bound hydrogenase of Alcaligenes eutrophus can be isolated in a state (termed "Unready") which requires up to several hours for full activation by hydrogen. By contrast the soluble hydrogenases of D. desulfuricans and A. eutrophus can be reactivated relatively rapidly. In all of these enzymes, with the exception of the latter one, the existence of the activated and deactivated states can be correlated with different ESR-detectable forms of nickel. The possible functions of nickel and [Fe-4S] clusters in catalysis are discussed.  相似文献   

7.
The NAD-reducing hydrogenase of Nocardia opaca 1 b was found to be a soluble, cytoplasmic enzyme. N. opaca 1 b does not contain an additional membrane-bound hydrogenase. The soluble enzyme was purified to homogeneity with a yield of 19% and a final specific activity of 45 mumol H2 oxidized min-1 mg protein-1. NAD reduction with H2 was completely dependent on the presence of divalent metal ions (Ni2+, Co2+, Mg2+, Mn2+) or of high salt concentrations (0.5-1.5 M). The most specific effect was caused by NiCl2, whose optimal concentration turned out to be 1 mM. The stimulation of activity by salts was the greater the less chaotrophic the anion. Maximal activity was achieved in 0.5 M potassium phosphate. Hydrogenase was also activated by protons. The pH optimum in 50 mM triethanolamine/HCl buffer containing 1 mM NiCl2 was 7.8-8.0. In the absence of Ni2+, hydrogenase was only active at pH values below 7.0. The reduction of other electron acceptors was not dependent on metal ions or salts, even though an approximately 1.5-fold stimulation of the reactions by 0.1-10 microM NiCl2 was observed. With the most effective electron acceptor, benzyl viologen, a 50-fold higher specific activity was determined than with NAD. The total molecular weight of hydrogenase has been estimated to be 200 000 (gel filtration) and 178 000 (sucrose density gradient centrifugation, and sodium dodecyl sulfate electrophoresis) respectively. The enzyme is a tetramer consisting of non-identical subunits with molecular weights of 64 000, 56 000, 31 000 and 27 000. It was demonstrated by electrophoretic analyses that in the absence of NiCl2 and at alkaline pH values the native hydrogenase dissociates into two subunit dimers. The first dimer was dark yellow coloured, completely inactive and composed of subunits with molecular weights of 64 000 and 31 000. The second dimer was light yellow, inactive with NAD but still active with methyl viologen. It was composed of subunits with molecular weights of 56 000 and 27 000. Immunological comparison of the hydrogenase of N. opaca 1 b and the soluble hydrogenase of Alcaligenes eutrophus H16 revealed that these two NAD-linked hydrogenases are partially identical proteins.  相似文献   

8.
Forty-four mutants of Alcaligenes eutrophus H 16 were isolated which grew poorly or not at all under autotrophic conditions. Four types were characterized with respect to their defects and their physiological properties. One mutant lacked both enzymes specific for autotrophic CO2 fixation, another one lacked both hydrogenases, and two mutants lacked either the membrane-bound or the soluble hydrogenase. Comparing the results of studies on these mutant types, the following conclusions were drawn: the lack of each hydrogenase enzyme could be partially compensated by the other one; the lack of membrane-bound hydrogenase did not affect autotrophic growth, whereas the lack of the soluble hydrogenase resulted in a decreased autotrophic growth rate. When pyruvate as well as hydrogen were supplied to the wild-type, the cell yield was higher than in the presence of pyruvate alone. Mutant experiments under these conditions indicated that either of both hydrogenases was able to add to the energy supply of the cell. Only the soluble hydrogenase was involved in the control of the rate of hydrogen oxidation by carbon dioxide; the mutant lacking this enzyme did not respond to the presence or absence of CO2. The suppression of growth on fructose by hydrogen could be mediated by either of both hydrogenases alone.  相似文献   

9.
The membrane-bound hydrogenase from Paracoccus denitrificans was purified 68-fold with a yield of 14.6%. The final preparation had a specific activity of 161.9 mumol H2 min-1 (mg protein)-1 (methylene blue reduction). Purification involved solubilization by Triton X-114, phase separation, chromatography on DEAE-Sephacel, ammonium-sulfate precipitation and chromatography on Procion-red HE-3B-Sepharose. Gel electrophoresis under denaturing conditions revealed two non-identical subunits with molecular masses of 64 kDa and 34 kDa. The molecular mass of the native enzyme was 100 kDa, as estimated by FPLC gel filtration in the presence of Chaps, a zwitterionic detergent. The isoelectric point of the Paracoccus hydrogenase was 4.3. Metal analysis of the purified enzyme indicated a content of 0.6 nickel and 7.3 iron atoms/molecule. ESR spectra of the reduced enzyme exhibited a close similarity to the membrane-bound hydrogenase from Alcaligenes eutrophus H16 with g values of 1.86, 1.92 and 1.98. The half-life for inactivation under air at 20 degrees C was 8 h. The Paracoccus hydrogenase reduced several electron acceptors, namely methylene blue, benzyl viologen, methyl viologen, menadione, cytochrome c, FMN, 2,6-dichloroindophenol, ferricyanide and phenazine methosulfate. The highest activity was measured with methylene blue (V = 161.9 U/mg; Km = 0.04 mM), whereas benzyl and methyl viologen were reduced at distinctly lower rates (16.5 U/mg and 12.1 U/mg, respectively). The native hydrogenase from P. denitrificans cross-reacted with purified antibodies raised against the membrane-bound hydrogenase from A. eutrophus H16. The corresponding subunits from both enzymes also showed immunological relationship. All reactions were of partial identity.  相似文献   

10.
Six new strains of Alcaligenes enriched for and isolated as nickel-resistant bacteria resemble Alcaligenes eutrophus H16 and contain both an NAD-reducing, tetrameric soluble hydrogenase and a membrane-bound hydrogenase. None of the soluble hydrogenases share with the Rhodococcus opacus MR11 enzyme tetramer the property of being cleaved easily into two dimeric moieties [a hydrogenase (βδ) and an NADH:acceptor oxidoreductase (αγ)], in the absence of nickel or at low ionic strength. The soluble hydrogenase of the newly isolated strain MR22 of R. opacus equalled that of strain MR11. The absence of a membrane-bound hydrogenase in Alcaligenes denitrificans strain 4a-2 and in Alcaligenes ruhlandii was confirmed. Received: 14 May 1996 / Accepted: 7 November 1996  相似文献   

11.
Alcaligenes eutrophus did not form the key enzymes of autotrophic metabolism, the soluble and particulate hydrogenases and ribulosebisphosphate carboxylase (RuBPC), during heterotrophic growth on succinate in batch cultures. During succinate-limited growth in a chemostat, high activities of both hydrogenases were observed. With decreasing dilution rate (D) the steady-state hydrogenase activity (H) followed first-order kinetics, expressed as follows: H = Hmax .e-alpha.D. An identical correlation was observed when autotrophic growth in a chemostat was limited by molecular hydrogen. During autotrophic growth under oxygen or carbon dioxide limitation, the activity if the soluble hydrogenase was low. These data suggested that hydrogenase formation depended on the availability of reducing equivalents to the cells. RuBPC activities were not correlated with the hydrogenase activities. During succinate-limited growth, RuBPC appeared at intermediate activities. During autotrophic growth in a carbon dioxide-limited chemostat, RuBPC was highly derepressed. RuBPC activity was not detected in cells that suffered from energy limitation with a surplus of carbon, as in a heterotrophic oxygen-limited chemostat, nor was it detected in cells limited in carbon and energy, as in the case of complete exhaustion of a heterotrophic substrate. From these data I concluded that RuBPC formation in A. eutrophus depends on two conditions, namely, carbon starvation and an excess of reducing equivalents.  相似文献   

12.
Rhizobium japonicum hydrogenase was purified to homogeneity from soybean root nodules by four column chromatography steps after solubilization from membranes by treatment with a nonionic detergent. The specific activity was from 40 to 65 mumol H2 oxidized min-1 mg protein-1 and was increased 450-fold relative to that in bacteroids. The yield of activity was from 7 to 12%. The molecular weight of the native enzyme was 104,000 as determined by sucrose density gradient centrifugation. Electrophoresis in the presence of sodium dodecyl sulfate revealed two subunits with molecular weights of 64,000 and 35,000, indicating an alpha beta subunit structure. The amino acid content of the protein indicated 20 cysteine residues. Analysis of the metal content indicated 0.59 +/- 0.06 mol Ni/mol hydrogenase and 6.5 +/- 1.2 mol Fe/mol hydrogenase. Antisera prepared to the hydrogenase cross-reacted with the enzyme in bacteroid extracts at all stages of the purification but did not cross-react with extracts of Alcaligenes eutrophus grown under chemolithotrophic conditions. The similarity of rhizobial hydrogenase to the particulate hydrogenases of A. eutrophus and A. latus is discussed.  相似文献   

13.
The soluble NAD-linked hydrogenase of Alcaligenes eutrophus H16 is a tetramer consisting of 4 non-identical subunits with molecular weights of 63,000, 56,000, 30,000 and 26,000. Conditions have been elaborated to separate and isolate each of these subunits as a single polypeptide by a preparative scale of polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate (SDS). Against each of the 4 subunits, polyclonal antibodies were produced. From the crude sera isolated from rabbits, the antibodies (IgG fractions) were purified by Protein A-Sepharose chromatography. By the double immunodiffusion method, comparison of the 4 types of subunits revealed that they are in fact different polypeptides. Subunit 1 (Mr = 63,000) and subunit 2 (Mr = 56,000) only reacted with their own specific antibodies and showed no cross-reaction whatsoever with the antibodies raised against the other subunits. The only immunological relationship among the different subunits was observed with subunit 3 (Mr = 30,000) and subunit 4 (Mr = 26,000); the type of cross-reaction indicated that they are partially identical. A. eutrophus H16 contains, in addition to the soluble hydrogenase, a membrane-bound hydrogenase which is a dimer composed of 2 subunits with Mr of 61,000 and 30,000. Whereas the 2 native enzymes did not show any immunological cross-reaction with the respective antibodies, it was demonstrated by double immunofluorescence labeling on nitrocellulose filters that the larger subunit of the membrane-bound hydrogenase cross-reacted significantly with the antibodies raised against subunit 2 of the soluble hydrogenase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The nickel-dependent chemolithoautotrophic growth of Alcaligenes eutrophus is apparently due to a requirement of nickel for active hydrogenase formation. Cells grown heterotrophically with fructose and glycerol revealed a specific activity of soluble and membrane-bound hydrogenase which was severalfold higher than the normal autotrophic level. The omission of nickel from the medium did not affect heterotrophic growth, but the soluble hydrogenase activity was reduced significantly. In the presence of ethylenediaminetetraacetic acid (EDTA), almost no hydrogenase activity was detected. The addition of nickel allowed active hydrogenase formation even when EDTA was present. When chloramphenicol was added simultaneously with nickel to an EDTA-containing medium, almost no hydrogenase activity was found. This indicates that nickel ions are involved in a process which requires protein synthesis and not the direct reactivation of a preformed inactive protein. The formation of the membrane-bound hydrogenase also appeared to be nickel dependent. Autotrophic CO2 assimilation did not specifically require nickel ions, since formate was utilized in the presence of EDTA and the activity of ribulosebisphosphate carboxylase was not affected under these conditions.  相似文献   

15.
Immunological comparison of the soluble and the membrane-bound hydrogenase of Alcaligenes eutrophus revealed no common antigenic determinants shared by the native proteins, however, a small amount of cross-reacting material was detected after freezing and thawing. Immune precipitation assays supported previous observations indicating the membrane-bound hydrogenase to be localized in the outer surface of the cytoplasmic membrane.The membrane-bound hydrogenases of A. eutrophus and Pseudomonas pseudoflava showed close immunological relationship, and material cross-reacting to both antisera was found in membrane extracts of all hydrogen-oxidizing strains of Pseudomonas, Alcaligenes and Aquaspirillum. Material cross-reacting to the membrane-bound hydrogenase of Xanthobacter autotrophicus GZ 29 was found only in a few hydrogen-oxidizing bacteria. Material cross-reacting to the soluble hydrogenase of A. eutrophus was detected in strains of A. eutrophus and A. ruhlandii only.Comparison of the membrane-bound hydrogenase of A. eutrophus, P. pseudoflava and X. autotrophicus with hydrogenases of other physiological bacterial groups revealed serological relationship to the membrane-bound hydrogenases of the hydrogen bacteria and of Chromatium vinosum only. The results are discussed in terms of physiological, taxonomical, and evolutionary aspects.  相似文献   

16.
Mutations in the genes coding for the soluble and the membrane-bound hydrogenase of Alcaligenes eutrophus strain H16 significantly affected the expression of respiratory chain components. In lithoautotrophically grown wild type cells electron flow mainly proceeded via the cytochrome c oxidases. Mutants defective in the membrane-bound hydrogenase contained a 2- to 3-fold higher cytochrome a content than the wild type and cytochrome c oxidase of the aa3-type was preferentially used by these cells for substrate oxidation. Mutants impaired in the soluble hydrogenase revealed slow growth on hydrogen, presumably due to inefficient reverse electron flow mechanisms which provide the cells with NADH for autotrophic CO2-fixation. In this class of mutants the two quinol oxidases of the o- and d-type in addition to the co-type oxidase were the predominant electron-transport branches.  相似文献   

17.
18.
There are at least two membrane-bound (HynSL and HupSL) and one soluble (HoxEFUYH) [NiFe] hydrogenases in Thiocapsa roseopersicina BBS, a purple sulfur photosynthetic bacterium. Genes coding for accessory proteins that participate in the biosynthesis and maturation of hydrogenases seem to be scattered along the chromosome. Transposon-based mutagenesis was used to locate the hydrogenase accessory genes. Molecular analysis of strains showing mutant phenotypes led to the identification of hupK (hoxV ), hypC1, hypC2, hypD, hypE, and hynD genes. The roles of hynD, hupK and the two hypC genes were investigated in detail. The putative HynD was found to be a hydrogenase-specific endoprotease type protein, participating in the maturation of the HynSL enzyme. HupK plays an important role in the formation of the functionally active membrane-bound [NiFe] hydrogenases, but not in the biosynthesis of the soluble enzyme. In-frame deletion mutagenesis showed that HypC proteins were not specific for the maturation of either hydrogenase enzyme. The lack of either HypC protein drastically reduced the activity of every hydrogenase. Hence both HypCs might participate in the maturation of [NiFe] hydrogenases. Homologous complementation with the appropriate genes substantiated the physiological roles of the corresponding gene products in the H2 metabolism of T. roseopersicina.  相似文献   

19.
When strains and mutants of the strictly aerobic hydrogen-oxidizing bacterium Alcaligenes eutrophus are grown heterotrophically on gluconate or fructose and are subsequently exposed to anaerobic conditions in the presence of the organic substrates, molecular hydrogen is evolved. Hydrogen evolution started immediately after the suspension was flushed with nitrogen, reached maximum rates of 70 to 100 mumol of H2 per h per g of protein, and continued with slowly decreasing rates for at least 18 h. The addition of oxygen to an H2-evolving culture, as well as the addition of nitrate to cells (which had formed the dissimilatory nitrate reductase system during the preceding growth), caused immediate cessation of hydrogen evolution. Formate is not the source of H2 evolution. The rates of H2 evolution with formate as the substrate were lower than those with gluconate. The formate hydrogenlyase system was not detectable in intact cells or crude cell extracts. Rather the cytoplasmic, NAD-reducing hydrogenase is involved by catalyzing the release of excessive reducing equivalents under anaerobic conditions in the absence of suitable electron acceptors. This conclusion is based on the following experimental results. H2 is formed only by cells which had synthesized the hydrogenases during growth. Mutants lacking the membrane-bound hydrogenase were still able to evolve H2. Mutants lacking the NAD-reducing or both hydrogenases were unable to evolve H2.  相似文献   

20.
The soluble hydrogenase (hydrogen: NAD+ oxidoreductase, EC 1.12.1.2) from Alcaligenes eutrophus H 16 was purified 68-fold with a yield of 20% and a final specific activity (NAD reduction) of about 54 mumol H2 oxidized/min per mg protein. The enzyme was shown to be homogenous by polyacrylamide gel electrophoresis. Its molecular weight and isoelectric point were determined to be 205 000 and 4.85 respectively. The oxidized hydrogenase, as purified under aerobic conditions, was of high stability but not reactive. Reductive activation of the enzyme by H2, in the presence of catalytic amounts of NADH, or by reducing agents caused the hydrogenase to become unstable. The purified enzyme, in its active state, was able to reduce NAD, FMN, FAD, menaquinone, ubiquinone, cytochrome c, methylene blue, methyl viologen, benzyl viologen, phenazine methosulfate, janus green, 2,6-dichlorophenoloindophenol, ferricyanide and even oxygen. In addition to hydrogenase activitiy, the enzyme exhibited also diaphorase and NAD(P)H oxidase activity. The reversibility of hydrogenase function (i.e. H2 evolution from NADH, methyl viologen and benzyl viologen) was demonstrated. With respect to H2 as substrate, hydrogenase showed negative cooperativity; the Hill coefficient was n = 0.4. The apparent Km value for H2 was found to be 0.037 mM. The absorption spectrum of hydrogenase was typical for non-heme iron proteins, showing maxima (shoulders) at 380 and 420 nm. A flavin component could be extracted from native hydrogenase characterized by its absorption bands at 375 and 447 nm and a strong fluorescense at 526 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号