首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hosts infected with the parasite Cryptosporidium parvum may excrete oocysts on soils in watersheds that supply public drinking water. Environmental stresses decrease the numbers of oocysts after deposition on soils. However, the rates and effects of combined stresses have not been well characterized, especially for the purposes of estimating decrease in numbers. We subjected oocysts to combined stresses of water potential (−4, −12, and −33 bars), above-freezing temperatures (4 and 30°C), and a subfreezing temperature (−14°C) for 1, 14, and 29 days and one to six freeze-thaw cycles (−14 to 10°C) to estimate coefficients to characterize population degradation using multiplicative error and exponential decay models. The experiments were carried out in NaCl solutions with water potentials of −4, −12, and −33 bars, in combination with temperature stresses at levels that could be expected in natural soils. Increased water potential increased the rate of population degradation for all temperature conditions investigated. Enhanced degradation leads to estimated rates of population degradation that are greater than those that have been reported and used in previous studies conducted to assess risk of water supply contamination from sources of C. parvum.  相似文献   

2.
R Fayer  T Nerad 《Applied microbiology》1996,62(4):1431-1433
Microcentrifuge tubes containing 8 x 10(6) purified oocysts of Cryptosporidium parvum suspended in 400 microliters of deionized water were stored at 5 degrees C for 168 h or frozen at -10, -15, -20, and -70 degrees C for 1 h to 168 h and then thawed at room temperature (21 degrees C). Fifty microliters containing 10(6) oocysts was administered to each of five to seven neonatal BALB/c mice by gastric intubation. Segments of ileum, cecum, and colon were taken for histology from each mouse 72 or 96 h later. Freeze-thawed oocysts were considered viable and infectious only when developmental-stage C. parvum organisms were found microscopically in the tissue sections. Developmental-stage parasites were not found in tissues from any mice that received oocysts frozen at -70 degrees C for 1, 8, or 24 h. All mice that received oocysts frozen at -20 degrees C for 1, 3, and 5 h had developmental-stage C. parvum; one of 6 mice that received oocysts frozen at -20 degrees C for 8 h had a few developmental-stage parasites; mice that received oocysts frozen at -20 degrees C for 24 and 168 h had no parasites. All mice that received oocysts frozen at -15 degrees C for 8 and 24 h had developmental-stage parasites; mice that received oocysts frozen at -15 degrees C for 168 h had no parasites. All mice that received oocysts frozen at -10 degrees C for 8, 24, and 168 h and those that received oocysts stored at 5 degrees C for 168 h had developmental-stage parasites. These findings demonstrate for the first time that oocysts of C. parvum in water can retain viability and infectivity after freezing and that oocysts survive longer at higher freezing temperatures.  相似文献   

3.
Concurrent with recent advances seen with Cryptosporidium parvum detection in both treated and untreated water is the need to properly evaluate these advances. A micromanipulation method by which known numbers of C. parvum oocysts, even a single oocyst, can be delivered to a test matrix for detection sensitivity is presented. Using newly developed nested PCR-restriction fragment length polymorphism primers, PCR sensitivity was evaluated with 1, 2, 3, 4, 5, 7, or 10 oocysts. PCR detection rates (50 samples for each number of oocysts) ranged from 38% for single oocysts to 92% for 5 oocysts, while 10 oocysts were needed to achieve 100% detection. The nested PCR conditions amplified products from C. parvum, Cryptosporidium baileyi, and Cryptosporidium serpentis but no other Cryptosporidium sp. or protozoan tested. Restriction enzyme digestion with VspI distinguished between C. parvum genotypes 1 and 2. Restriction enzyme digestion with DraII distinguished C. parvum from C. baileyi and C. serpentis. Use of known numbers of whole oocysts encompasses the difficulty of liberating DNA from the oocyst and eliminates the standard deviation inherent within a dilution series. To our knowledge this is the first report in which singly isolated C. parvum oocysts were used to evaluate PCR sensitivity. This achievement illustrates that PCR amplification of a single oocyst is feasible, yet sensitivity remains an issue, thereby illustrating the difficulty of dealing with low oocyst numbers when working with environmental water samples.  相似文献   

4.
5.
The ability to determine inactivation rates of Cryptosporidium parvum oocysts in environmental samples is critical for assessing the public health hazard of this gastrointestinal parasite in watersheds. We compared a dye permeability assay, which tests the differential uptake of the fluorochromes 4'-6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI) by the oocysts (A. T. Campbell, L. J. Robertson, and H. V. Smith, Appl. Environ. Microbiol. 58:3488-3493, 1992), with an in vitro excystation assay, which tests their ability to excyst and, thus, their metabolic potential and potential for infectivity (J.B. Rose, H. Darbin, and C.P. Gerba, Water Sci. Technol. 20:271-276, 1988). Formaldehyde-fixed (killed) oocysts and untreated oocysts were permeabilized with sodium hypochlorite and subjected to both assays. The results of the dye permeability assays were the same, while the excystation assay showed that no excystation occurred in formaldehyde-fixed oocysts. This confirmed that oocyst wall permeability, rather than metabolic activity potential, was the basis of the dye permeability viability assessment. A previously developed protocol (L. J. Anguish and W. C. Ghiorse, Appl. Environ. Microbiol. 63:724-733, 1997) for determining viability of oocysts in soil and sediment was used to examine further the use of oocyst permeability status as an indicator of oocyst viability in fecal material stored at 4 degrees C and in water at various temperatures. Most of the oocysts in fresh calf feces were found to be impermeable to the fluorochromes. They were also capable of excystation, as indicated by the in vitro excystation assay, and were infective, as indicated by a standard mouse infectivity assay. The dye permeability assay further showed that an increase in the intermediate population of oocysts permeable to DAPI but not to PI occurred over time. There was also a steady population of oocysts permeable to both dyes. Further experiments with purified oocysts suspended in distilled water showed that the shift in oocyst populations from impermeable to partially permeable to fully permeable was accelerated at temperatures above 4 degrees C. This sequence of oocyst permeability changes was taken as an indicator of the oocyst inactivation pathway. Using the dye permeability results, inactivation rates of oocysts in two fecal pools stored in the dark at 4 degrees C for 410 and 259 days were estimated to be 0.0040 and 0.0056 oocyst day-1, respectively. The excystation assay gave similar inactivation rates of 0.0046 and 0.0079 oocyst day-1. These results demonstrate the utility of the dye permeability assay as an indicator of potential viability and infectivity of oocysts, especially when combined with improved microscopic methods for detection of oocysts in soil, turbid water, and sediments.  相似文献   

6.
The effects of freeze-thaw events on the inactivation of Cryptosporidium parvum oocysts in soil were examined. Oocysts were inoculated into distilled water in microcentrifuge tubes or into chambers containing soil the water content of which was maintained at 3%, 43%, or 78% of the container capacity. The chambers and tubes were then embedded in 3 soil samples from different aspects of a hillside landscape (Experiments 1 and 2) and in 3 distinct soil types (Experiment 3) and frozen at -10 C. Containers were thawed every 3 days for a period of 24 hr in 1-9 freeze-thaw cycles over 27 days (Experiments 1 and 2) and 2-5 freeze-thaw cycles over 15 days (Experiment 3). Oocyst viability was measured using the fluorescent dyes 4'6-diaminidino-2-phenylindole and propidium iodide. Inactivation rates were greater in soils than in water and greater in dry soil than in moist and wet soils. Soil type showed no effect on inactivation. Oocysts subjected to freeze-thaw cycles had inactivation rates not significantly different from those of oocysts subjected to -10 C under static conditions. The results indicated that 99% of oocysts exposed to soils that are frozen at -10 C will become inactivated within 50 days whether or not freeze-thaw cycles occur.  相似文献   

7.
The purpose of this study was to characterize the viral symbiont (CPV) of Cryptosporidium parvum sporozoites and evaluate the CPV capsid protein (CPV40) as a target for sensitive detection of the parasite. Recombinant CPV40 was produced in Escherichia coli, purified by affinity chromatography, and used to prepare polyclonal rabbit sera specific for the viral capsid protein. Anti-rCPV40 recognized a 40 kDa and a 30 kDa protein in C. parvum oocysts and appeared to localize to the apical end of the parasite. Anti-rCPV40 serum was capable of detecting as few as 1 C. parvum oocyst in a dot blot assay, the sensitivity being at least 1000-fold greater than sera reactive with total native C. parvum oocyst protein or specific for the 41 kDa oocyst surface antigen. Water samples were seeded with C. parvum oocysts and incubated at 4, 20, or 25 degrees C for greater than 3 months to determine if CPV levels were correlated with oocyst infectivity. Samples were removed monthly and subjected to mouse and cell culture infectivity, as well as PCR analysis for infectivity and viral particle presence. While sporozoite infectivity declined by more than 75% after 1 month at 25 degrees C, the CPV signal was similar to that of control samples at 4 degrees C. By 3 months at 20 degrees C, the C. parvum oocysts were found to be non-infectious, but retained a high CPV signal. This study indicates that CPV is an excellent target for sensitive detection of C. parvum oocysts in water, but may persist for an indefinite time after oocysts become non-infectious.  相似文献   

8.
9.
Cryptosporidium parvum oocysts were stored in 1-ml aliquots of filtered river water at -20, 4, 10, and 21-23 C in the dark. Oocysts were also added to filter-sterilized river water samples and stored at 21-23 C. The infectivity of oocysts stored under different conditions was assayed at weekly intervals through infection of human adenocarcinoma ileocecal (HCT-8) cell monolayers. Wells containing between 10 and 100 foci of infection were enumerated by immunofluorescent microscopy, and the number of infective oocysts was calculated. No infectious oocysts were detected after 1 wk at -20 C. The number of infective oocysts stored at 4 C decreased 5-fold, and the number of those stored at 10 C decreased 2.5-fold after 14 wk. The infectivity of oocysts stored in potassium dichromate (positive control) at 4 C decreased 2-fold over 14 wk. The number of infective oocysts in filter-sterilized and non-filter-sterilized river water stored at 21-23 C decreased by 3.3 and 2.6 log units, respectively, over 12 wk, and no foci of infection were detected at 14 wk. The results show that as temperature increased from 4 to 23 C, the duration of oocyst infectivity decreased.  相似文献   

10.
R Fayer 《Applied microbiology》1994,60(8):2732-2735
Cryptosporidium parvum oocysts suspended in 0.5 ml of distilled water were pipetted into plastic vials which were inserted into wells in the heated metal block of a thermal DNA cycler. Block temperatures were set at 5 degrees C incremental temperatures from 60 to 100 degrees C. At each temperature setting four vials containing C. parvum oocysts were placed into wells and held for 15 s before time was recorded as zero, and then pairs of vials were removed 1 and 5 min later. Upon removal, all vials were immediately cooled on crushed ice. Also, at each temperature interval one vial containing 0.5 ml of distilled water was placed in a well and a digital thermometer was used to record the actual water temperature at 30-s intervals. Heated oocyst suspensions as well as unheated control suspensions were orally inoculated by gavage into 7- to 10-day-old BALB/c mouse pups to test for infectivity. At 96 h after inoculation the ileum, cecum, and colon from each mouse were removed and prepared for histology. Tissue sections were examined microscopically. Developmental-stage C. parvum was found in all three gut segments from all mice that received oocysts in unheated water and in water that reached temperatures of 54.4, 59.9, and 67.5 degrees C at 1 min when vials were removed from the heat source. C. parvum was also found in the ileum of one of six mice that received oocysts in water that reached a temperature of 59.7 degrees C at 5 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Transmission of infectious oocysts of Cryptosporidium parvum via surface- and drinking-water supplies has been reported and many surface waters flow into the sea, potentially causing runoff of animal-infected faeces. Eating raw mussels is a common practice in many countries, increasing the public's risk of acquiring enteric pathogens. The aims of the present study were to estimate how long C. parvum oocysts remain infectious in artificial seawater, to determine if the oocysts are retained in mussel tissues (Mytilus galloprovincialis), and how long they maintain their infectivity. Oocysts were incubated in artificial seawater at 6-8 degrees C under moderate oxygenation and the infectivity of oocysts was tested five times, over a 12 month period after incubation in seawater, in BALB/c mice. Each pup was inoculated per os with 10(5) oocysts and killed 5 days p.i. Oocysts remained infectious for 1 year. Forty mussels held in an aquarium containing artificial seawater filtered out more than 4 x 10(8) oocysts in a 24 h period. Oocysts were detected in the gill washing up to 3 days p.i., in the haemolymph up to 7 days p.i., and in the intestinal tract up to 14 days p.i. Oocysts collected from the gut of mussels 7 and 14 days p.i. were observed to have infected mice. These results suggest that C. parvum oocysts can survive in seawater for at least 1 year and can be filtered out by benthic mussels, retaining their infectivity up to 14 days, so seawater and molluscs are a potential source of C. parvum infection for humans.  相似文献   

12.
AIMS: Evaluation of three flocculation methods for the purification of Cryptosporidium parvum oocysts from tap water. METHODS AND RESULTS: Ferric sulphate, aluminium sulphate and calcium carbonate were compared for their recovery efficiency of C. parvum oocysts from tap water. Lower mean recovery was achieved by calcium carbonate (38.8%) compared with ferric sulphate (61.5%) and aluminium sulphate (58.1%) for the recovery of 2.5 x 10(5) oocysts l(-1); 2.5 oocysts l(-1) and 1 oocyst l(-1) were adequately purified using ferric sulphate flocculation. In vitro excystation experiments showed that ferric sulphate flocculation does not markedly reduce the viability of oocysts. CONCLUSIONS: Ferric sulphate flocculation is a simple and effective tool for the purification of C. parvum oocysts from tap water. SIGNIFICANCE AND IMPACT OF THE STUDY: The high recovery rates and low impact on oocyst viability provided by ferric sulphate flocculation might be useful for the detection of Cryptosporidium oocysts in environmental water samples.  相似文献   

13.
AIM: To determine whether batch solar disinfection (SODIS) can be used to inactivate oocysts of Cryptosporidium parvum and cysts of Giardia muris in experimentally contaminated water. METHODS AND RESULTS: Suspensions of oocysts and cysts were exposed to simulated global solar irradiation of 830 W m(-2) for different exposure times at a constant temperature of 40 degrees C. Infectivity tests were carried out using CD-1 suckling mice in the Cryptosporidium experiments and newly weaned CD-1 mice in the Giardia experiments. Exposure times of > or =10 h (total optical dose c. 30 kJ) rendered C. parvum oocysts noninfective. Giardia muris cysts were rendered completely noninfective within 4 h (total optical dose >12 kJ). Scanning electron microscopy and viability (4',6-diamidino-2-phenylindole/propidium iodide fluorogenic dyes and excystation) studies on oocysts of C. parvum suggest that inactivation is caused by damage to the oocyst wall. CONCLUSIONS: Results show that cysts of G. muris and oocysts of C. parvum are rendered completely noninfective after batch SODIS exposures of 4 and 10 h (respectively) and is also likely to be effective against waterborne cysts of Giardia lamblia. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate that SODIS is an appropriate household water treatment technology for use as an emergency intervention in aftermath of natural or man-made disasters against not only bacterial but also protozoan pathogens.  相似文献   

14.
A sensitive and rapid method was developed to detect Cryptosporidium parvum oocysts in drinking water. This molecular assay combined immunomagnetic separation with polymerase chain reaction amplification to detect very low levels of C. parvum oocysts. Magnetic beads coated with anti-cryptosporidium were used to capture oocysts directly from drinking water membrane filter concentrates, at the same time removing polymerase chain reaction inhibitory substances. The DNA was then extracted by the freeze-boil Chelex-100 treatment, followed by polymerase chain reaction. The immunomagnetic separation-polymerase chain reaction product was identified by non-radioactive hybridization using an internal oligonucleotide probe labelled with digoxigenin. This immunomagnetic separation-polymerase chain reaction assay can detect the presence of a single seeded oocyst in 5-100-1 samples of drinking water, thereby assuring the absence of C. parvum contamination in the sample under analysis.  相似文献   

15.
AIMS: The aim of this research was to examine the effect of thermal treatments on the viability and infectivity of Cryptosporidium parvum oocysts attached to a beef surface. METHODS AND RESULTS: This study examined the effects of heat treatment (60 or 75 degrees C) on the viability of C. parvum oocysts inoculated onto the surface of beef muscle estimated by vital dye assay. The infectivity of the oocysts was assessed against monolayers of HCT-8 cells. At 60 degrees C viability of the oocysts decreased from 100% at T0 to 64.2% at T60. At 75 degrees C the viability of the oocysts decreased from 100% at T0 to 53.7% at T15 and finally to 11.2% at T60. Oocysts were rendered noninfective against monolayers of HCT-8 cells following treatments of 60 degrees C/45 s and 75 degrees C/20 s. CONCLUSION: The washing of carcasses with hot water and standard thermal treatments is sufficient to kill C. parvum on beef. SIGNIFICANCE AND IMPACT OF THE STUDY: This study found that relatively mild heat, currently used to decontaminate and heat treat beef carcasses and to cook meat products, is capable of inactivating C. parvum.  相似文献   

16.
A PCR method for the quantitation of Cryptosporidium parvum oocysts in municipal drinking water samples was investigated. Quantitative PCR uses an internal standard (IS) template with unknown target numbers to compare to standards of known concentrations in a standard curve. The IS template was amplified using the same primers used to amplify a portion of a 358 bp gene fragment that encodes a repetitive oocyst wall protein in C. parvum. Municipal water samples spiked with known numbers of C. parvum oocysts were tested by quantitative PCR using the IS and the Digene SHARP Signal System Assay for PCR product detection. The absorbance readings for target DNA and IS templates versus the number of molecules of the target DNA were plotted to generate standard curves for estimating oocyst numbers. The method allowed the quantitation of oocysts from log 3 to log 5 spiked into municipal water samples.  相似文献   

17.
18.
A small-volume sentinel chamber was developed to assess the effects of environmental stresses on survival of sucrose-Percoll-purified Cryptosporidium parvum oocysts in soil and animal wastes. Chambers were tested for their ability to equilibrate with external chemical and moisture conditions. Sentinel oocysts were then exposed to stresses of the external environment that affected their viability (potential infectivity), as indicated by results of a dye permeability assay. Preliminary laboratory experiments indicated that temperatures between 35 and 50 degrees C and decreases in soil water potential (-0.003 to -3.20 MPa) increased oocyst inactivation rates. The effects of two common animal waste management practices on oocyst survival were investigated on three dairy farms in Delaware County, N.Y., within the New York City watershed: (i) piling wastes from dairy youngstock (including neonatal calves) and (ii) spreading wastes as a soil amendment on an agricultural field. Sentinel containers filled with air-dried and sieved (2-mm mesh) youngstock waste or field soil were wetted and inoculated with 2 million oocysts in an aqueous suspension and then placed in waste piles on two different farms and in soil within a cropped field on one farm. Controls consisted of purified oocysts in either phosphate-buffered saline or distilled water contained in sealed microcentrifuge tubes. Two microdata loggers recorded the ambient temperature at each field site. Sentinel experiments were conducted during the fall and winter (1996 to 1997) and winter (1998). Sentinel containers and controls were removed at 2- to 4-week intervals, and oocysts were extracted and tested by the dye permeability assay. The proportions of potentially infective oocysts exposed to the soil and waste pile material decreased more rapidly than their counterpart controls exposed to buffer or water, indicating that factors other than temperature affected oocyst inactivation in the waste piles and soil. The effect of soil freeze-thaw cycles was evident in the large proportion of empty sentinel oocysts. The potentially infective sentinel oocysts were reduced to <1% while the proportions in controls did not decrease below 50% potentially infective during the first field experiment. Microscopic observations of empty oocyst fragments indicated that abrasive effects of soil particles were a factor in oocyst inactivation. A similar pattern was observed in a second field experiment at the same site.  相似文献   

19.
Most procedures that have been described for purifying Cryptosporidium parvum oocysts are designed to either identify the parasites in clinical specimens or isolate oocysts from a small volume of feces from infected animals. The present study describes a rapid method for purifying high numbers of C. parvum oocysts from feces of infected calves that contains minimal contaminating fecal material and bacteria. The isolation method is based on differential flotation of C. parvum oocysts in NaCl, followed by ether extraction to solubilize lipids in calf feces. This procedure regularly yields > 10(9) purified C. parvum oocysts within 1-2 days of feces collection.  相似文献   

20.
Cryptosporidium parvum is a major cause of diarrheal disease in humans and has been identified in 78 other species of mammals. The oocyst stage, excreted in feces of infected humans and animals, has been responsible for recent waterborne outbreaks of human cryptosporidiosis. High temperature and long exposure time have been shown to render oocysts (suspended in water) noninfectious, but for practical purposes, it is important to know if high-temperature--short-time conditions (71.7 degrees C for 15 s) used in commercial pasteurization are sufficient to destroy infectivity of oocysts. In this study, oocysts were suspended in either water or whole milk and heated to 71.7 degrees C for 15, 10, or 5 s in a laboratory-scale pasteurizer. Pasteurized and nonpasteurized (control) oocysts were then tested for the ability to infect infant mice. No mice (0 of 177) given 10(5) oocysts pasteurized for 15, 10, or 5 s in either water or milk were found to be infected with C. parvum on the basis of histologic examination of the terminal ileum. In contrast, all (80 of 80) control mice given nonpasteurized oocysts were heavily infected. These data indicate that high-temperature--short-time pasteurization is sufficient to destroy the infectivity of C. parvum oocysts in water and milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号