首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Abstract: We have evaluated the effect of α-ketoisocaproic acid (KIC), the ketoacid of leucine, on the production of glutamine by cultured astrocytes. We used 15NH4Cl as a metabolic tracer to measure the production of both [5-15N]glutamine, reflecting amidation of glutamate via glutamine synthetase, and [2-15N]glutamine, representing the reductive amination of 2-oxoglutarate via glutamate dehydrogenase and subsequent conversion of [15N]-glutamate to [2-15N]glutamine. Addition of KIC (1 mM) to the medium diminished the production of [5-15N]glutamine and stimulated the formation of [2-15N]glutamine with the overall result being a significant inhibition of net glutamine synthesis. An external KIC concentration as low as 0.06 mM inhibited synthesis of [5-15N]glutamine and a level as low as 0.13 mM enhanced labeling (atom% excess) of [2-15N]glutamine. Higher concentrations of KIC in the medium had correspondingly larger effects. The presence of KIC in the medium did not affect flux through glutaminase, which was measured using [2-15N]glutamine as a tracer. Nor did KIC inhibit the activity of glutamine synthetase that was purified from sheep brain. Addition of KIC to the medium caused no increased release of lactate dehydrogenase from the astrocytes, suggesting that the ketoacid was not toxic to the cells. KIC treatment was associated with an approximately twofold increase in the formation of 14CO2 from [U-14C]glutamate, indicating that transamination of glutamate with KIC increases intraastrocytic α-ketoglutarate, which is oxidized in the tricarboxylic acid cycle. KIC inhibited glutamine synthesis more than any other ketoacid tested, with the exception of hydroxypyruvate. The data indicate that KIC diminishes flux through glutamine synthetase by lowering the intraastrocytic glutamate concentration below the Km of glutamine synthetase for glutamate, which we determined to be ~7 mM.  相似文献   

2.
Approximately 26.0% of the [15N] glutamate and [alpha 15N] glutamine formed in organotypic cerebellar explants was derived from [15N] leucine. Approximately 14.0% of the 15NH3 and [amide 15N] glutamine synthesized came from leucine nitrogen. Another 4.0% of the alpha nitrogen of both glutamate and glutamine was derived from [15N] valine. These results suggest that branched-chain amino acids, particularly leucine, may be important for the synthesis of glutamic acid by the brain.  相似文献   

3.
Abstract: The aim was to study the extent to which leu-cine furnishes α-NH2 groups for glutamate synthesis via branched-chain amino acid aminotransferase. The transfer of N from leucine to glutamate was determined by incubating astrocytes in a medium containing [15N]leucine and 15 unlabeled amino acids; isotopic abundance was measured with gas chromatography-mass spectrometry. The ratio of labeling in both [15N]glutamate/[15N]leucine and [2-15N]glutamine/[15N]leucine suggested that at least one-fifth of all glutamate N had been derived from leucine nitrogen. At the same time, enrichment in [15N]leucine declined, reflecting dilution of the 16N label by the unlabeled amino acids that were in the medium. Isotopic abundance in [16N]-isoleucine increased very quickly, suggesting the rapidity of transamination between these amino acids. The appearance of 15N in valine was more gradual. Measurement of branched-chain amino acid transaminase showed that the reaction from leucine to glutamate was approximately six times more active than from glutamate to leucine (8.72 vs. 1.46 nmol/min/mg of protein). However, when the medium was supplemented with α-ketoisocaproate (1 mM), the ketoacid of leucine, the reaction readily ran in the “reverse” direction and intraastrocytic [glutamate] was reduced by ~50% in only 5 min. Extracellular concentrations of α-ketoisocaproate as low as 0.05 mM significantly lowered intracellular [glutamate]. The relative efficiency of branched-chain amino acid transamination was studied by incubating astrocytes with 15 unlabeled amino acids (0.1 mM each) and [15N]glutamate. After 45 min, the most highly labeled amino acid was [15N]alanine, which was closely followed by [15N]leucine and [15N]isoleucine. Relatively little 15N was detected in any other amino acids, except for [15N]serine. The transamination of leucine was ~17 times greater than the rate of [1-14C]leucine oxidation. These data indicate that leucine is a major source of glutamate nitrogen. Conversely, reamination of a-ketoisocaproate, the ketoacid of leucine, affords a mechanism for the temporary “buffering” of intracellular glutamate.  相似文献   

4.
The role of the glutamate dehydrogenase reaction as a pathway of glutamate synthesis was studied by incubating synaptosomes with 5 mM 15NH4Cl and then utilizing gas chromatography-mass spectrometry to measure isotopic enrichment in glutamate and aspartate. The rate of formation of [15N]glutamate and [15N]aspartate from 5 mM 15NH4Cl was approximately 0.2 nmol/min/mg of protein, a value much less than flux through glutaminase (4.8 nmol/min/mg of protein) but greater than flux through glutamine synthetase (0.045 nmol/min/mg of protein). Addition of 1 mM 2-oxoglutarate to the medium did not affect the rate of [15N]glutamate formation. O2 consumption and lactate formation were increased in the presence of 5 mM NH3, whereas the intrasynaptosomal concentrations of glutamate and aspartate were unaffected. Treatment of synaptosomes with veratridine stimulated reductive amination of 2-oxoglutarate during the early time points. The production of ([15N]glutamate + [15N]aspartate) was enhanced about twofold in the presence of 5 mM beta-(+/-)-2-aminobicyclo [2.2.1]heptane-2-carboxylic acid, a known effector of glutamate dehydrogenase. Supplementation of the incubation medium with a mixture of unlabelled amino acids at concentrations similar to those present in the extracellular fluid of the brain had little effect on the intrasynaptosomal [glutamate] and [aspartate]. However, the enrichment in these amino acids was consistently greater in the presence of supplementary amino acids, which appeared to stimulate modestly the reductive amination of 2-oxoglutarate. It is concluded: (a) compared with the phosphate-dependent glutaminase reaction, reductive amination is a relatively minor pathway of synaptosomal glutamate synthesis in both the basal state and during depolarization; (b) NH3 toxicity, at least in synaptosomes, is not referable to energy failure caused by a depletion of 2-oxoglutarate in the glutamate dehydrogenase reaction; and (c) transamination is not a major mechanism of glutamate nitrogen production in nerve endings.  相似文献   

5.
A study was undertaken to assess the role of a physiological concentration of glutamine in AS-30D cell metabolism. Flux of14C-glutamine to14CO2 and of14C-acetate to glutamate was detected indicating reversible flux between glutamate and TCA cycle -ketoglutarate. These fluxes were transaminase dependent. A flux analysis was compared using data from three tracers that label -ketoglutarate carbon 5, [2-14C]glucose, [1-14C]acetate and [5-14C]glutamine. The analysis indicated that the probability of flux of TCA cycle -ketoglutarate to glutamate was, at minimum, only slightly less than the probability of flux of -ketoglutarate through -ketoglutarate dehydrogenase. The apparent Km for oxidative flux of [14C]glutamine to14CO2, 0.07 mM, indicated that this flux was at a maximal rate at physiological, 0.75 mM, glutamine. Although oxidative flux through -ketoglutarate dehydrogenase was the major fate of glutamine, flux of glutamine to lipid via reductive carboxylation of -ketoglutarate was demonstrated by measuring incorporation of [5-14C]glutamine into14C-lipid. In media containing glucose (6 mM), and glutamine (0.75 mM) 47 per cent of the lipid synthesized from substrates in the media was derived from glutamine via reductive carboxylation and 49 per cent from glucose. These findings of nearly equal fluxes suggest that lipogenesis via reductive carboxylation may be an important role of glutamine in hepatoma cells.  相似文献   

6.
Multinuclear NMR spectroscopy is used to investigate the effect of glutamine on neuronal glucose metabolism. Primary neurons were incubated with [1-13C]glucose in the absence or presence of glutamine (2 mM) and/or NH4Cl (5 mM). After ammonia-treatment, the concentrations of high-energy phosphates decreased up to 84% of control, which was aggravated in glutamine-containing medium (up to 42% of control). These effects could not be attributed to changes in mitochondrial glucose oxidation. Withdrawal of glutamine decreased amino acid concentrations, e.g. of glutamate to 53%, but also considerably lessened the 13C enrichment in [4-13C]glutamate to 8.3% of control, and decreased the 13C-enrichment in acetyl-CoA entering the Krebs cycle (P<0.001). Thus, although glutamine is potent in replenishing neuronal glutamate stores, glutamate formation is mainly attributed to its de novo synthesis from glucose. Furthermore, mitochondrial glucose metabolism strongly depends on the supply of carbons from glutamine, indicating that exogenous glutamine is a well-suited substrate to replenish neuronal Krebs cycle intermediates.  相似文献   

7.
The direct incorporation of 15NH4Cl into amino acids in illuminated spinach (Spinacia oleracea L.) chloroplasts in the presence of 2-oxoglutarate plus malate was determined. The amido-N of glutamine was the most highly labeled N-atom during 15NH4 assimilation in the presence of malate. In 4 minutes the 15N-label of the amido-N of glutamine was 37% enriched. In contrast, values obtained for both the N-atom of glutamate and the amino-N of glutamine were only about 20% while that of the N-atom of aspartate was only 3%. The addition of malate during the assimilation of 15NH4Cl and Na15NO2 greatly increased the 15N-label into glutamine but did not qualitatively change the order of the incorporation of 15N-label into all the amino acids examined. This evidence indicates the direct involvement of the glutamine synthetase/glutamate synthase pathway for ammonia and nitrite assimilation in isolated chloroplasts. The addition of malate or succinate during ammonia assimilation also led to more than 3-fold increase in [14C]2-oxoglutarate transport into the chloroplast as well as an increase in the export of [14C]glutamate out of the chloroplast. Little [14C]glutamine was detected in the medium of the chloroplast preparations. The stimulation of 15N-incorporation and [14C]glutamate export by malate could be directly attributed to the increase in 2-oxoglutarate transport activity (via the 2-oxoglutarate translocator) observed in the presence of exogenous malate.  相似文献   

8.
Succulent stems of Cissus quadrangularis L. (Vitaceae) contain glutamine synthetase, glutamate synthase, and glutamate dehydrogenase. The CO2 and water gas exchanges of detached internodes were typical for Crassulacean acid metabolism plants. During three physiological phases, e.g. in the dark, in the early illumination period after stomata closure, and during the late light phase with the stomata wide open, 15NH4Cl was injected into the central pith of stem sections. The kinetics of 15N labeling in glutamate and glutamine suggested that glutamine synthetase was involved in the initial ammonia fixation. In the presence of methionine sulfoximine, an inhibitor of glutamine synthetase, the incorporation of 15N derived from 15NH4Cl was almost completely inhibited. Injections of amido-15N glutamine demonstrated a potential for 15N transfer from the amido group of glutamine into glutamate which was suppressed by the glutamate synthase inhibitor, azaserine. The evidence indicates that glutamine synthetase and glutamate synthase could assimilate ammonia and cycle nitrogen during all phases of Crassulacean acid metabolism.  相似文献   

9.
Leucine and beta-(+/-)-2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH) stimulated, in a dose-dependent manner, reductive amination of 2-oxoglutarate in rat brain synaptosomes treated with Triton X-100. The concentration dependence curves were sigmoid, with 10-15-fold stimulations at 15 mM leucine (or BCH); oxidative deamination of glutamate also was enhanced, albeit less. In intact synaptosomes, leucine and BCH elevated oxygen uptake and increased ammonia formation, consistent with stimulation of glutamate dehydrogenase (GDH). Enhancement of oxidative deamination was seen with endogenous as well as exogenous glutamate and with glutamate generated inside synaptosomes from added glutamine. With endogenous glutamate, the stimulation of oxidative deamination was accompanied by a decrease in aspartate formation, which suggests a concomitant reduction in flux through aspartate aminotransferase. Activation of reductive amination of 2-oxoglutarate by BCH or leucine could not be demonstrated even in synaptosomes depleted of internal glutamate. It is suggested that GDH in synaptosomes functions in the direction of glutamate oxidation, and that leucine may act as an endogenous activator of GDH in brain in vivo.  相似文献   

10.
Nitrogen metabolism was examined in senescent flag leaves of 90- to 93-day-old wheat (Triticum aestivum L. cv Yecora 70) plants. CO2 assimilation and the levels of protein, chlorophyll, and nitrogen in the leaves decreased with age. Glutamine synthetase activity decreased to one-eighth of the level in young flag leaves. Detached leaves were incubated (with the cut base) in 15N-labeled NH3, glutamate, or glycine in the light (1.8 millieinstein per square meter per second) at 25°C in an open gas exchange system under normal atmospheric conditions for up to 135 minutes. The 15N-enrichment of various amino acids derived from these 15N-substrates were examined. The amido-N of glutamine was the first 15N-labeled product in leaves incubated with 15NH4Cl whereas serine, closely followed by the amido- and amino-N of glutamine, were the most highly 15N-labeled products during incubation with [15N]glycine. In contrast, aspartate and alanine were the first 15N-labeled products when [15N] glutamate was used. These results indicate that NH3 was assimilated via glutamine synthetase and glutamate synthase activities and the photorespiratory nitrogen cycle remained functional in these senescent wheat flag leaves. In contrast, an involvement of glutamate dehydrogenase in the assimilation of ammonia could not be detected in these tissues.  相似文献   

11.
The major radioactive products of the fixation of [13N]N2 by Azolla caroliniana Willd.-Anabaena azollae Stras. were ammonium, glutamine, and glutamate, plus a small amount of alanine. Ammonium accounted for 70 and 32% of the total radioactivity recovered after fixation for 1 and 10 minutes, respectively. The presence of a substantial pool of [13N]N2-derived 13NH4+ after longer incubation periods was attributed to the spatial separation between the site of N2-fixation (Anabaena) and a second, major site of assimilation (Azolla). Initially, glutamine was the most highly radioactive organic product formed from [13N]N2, but after 10 minutes of fixation glutamate had 1.5 times more radiolabel than glutamine. These kinetics of radiolabeling, along with the effects of inhibitors of glutamine synthetase and glutamate synthase on assimilation of exogenous and [13N]N2-derived 13NH4+, indicate that ammonium assimilation occurred by the glutamate synthase cycle and that glutamate dehydrogenase played little or no role in the synthesis of glutamate by Azolla-Anabaena.  相似文献   

12.
The effects of methionine sulfoximine and ammonium chloride on [14C] glutamate metabolism in excised leaves of Triticum aestivum were investigated. Glutamine was the principal product derived from [U14C]glutamate in the light and in the absence of inhibitor or NH4Cl. Other amino acids, organic acids, sugars, sugar phosphates, and CO2 became slightly radioactive. Ammonium chloride (10 mm) increased formation of [14C] glutamine, aspartate, citrate, and malate but decreased incorporation into 2-oxoglutarate, alanine, and 14CO2. Methionine sulfoximine (1 mm) suppressed glutamine synthesis, caused NH3 to accumulate, increased metabolism of the added radioactive glutamate, decreased tissue levels of glutamate, and decreased incorporation of radioactivity into other amino acids. Methionine sulfoximine also caused most of the 14C from [U-14C]glutamate to be incorporated into malate and succinate, whereas most of the 14C from [1-14C]glutamate was metabolized to CO2 and sugar phosphates. Thus, formation of radioactive organic acids in the presence of methionine sulfoximine does not take place indirectly through “dark” fixation of CO2 released by degradation of glutamate when ammonia assimilation is blocked. When illuminated leaves supplied with [U-14C] glutamate without inhibitor or NH4Cl were transferred to darkness, there was increased metabolism of the glutamate to glutamine, aspartate, succinate, malate, and 14CO2. Darkening had little effect on the labeling pattern in leaves treated with methionine sulfoximine.  相似文献   

13.
In experiments with isolated hepatocytes, Seglen [1] has shown that in the combined presence of NH4Cl and high concentrations of valine, incorporation of this amino acid into cell protein is inhibited. He has proposed that NH4Cl, in addition to inhibiting protein degradation in lysosomes, inhibits protein synthesis in these cells as part of a general toxic effect. To determine if NH4Cl inhibits protein synthesis in cultured cells we incubated rat embryo fibroblasts, prelabeled with [14C]leucine, in the presence of 10 mM NH4Cl and 15 mM leucine in both growth and serum-free media. We did not detect any effect of NH4+ on protein synthesis or cell growth over a 3-day period. A partial inhibition of protein degradation was observed, particularly during the first 24 h of the experiment. In pulse-labeling experiments, NH4Cl had no effect on the incorporation of [3H]leucine in the media. High concentrations of leucine, however, reduced re-utilization of endogenously derived leucine and inhibited the transport of valine into the cellular acid-soluble pool.These experiments show that at least in cultured fibroblasts 10 mM NH4Cl shows no significant toxicity beyond an inhibition of lysosomal function. In addition these data suggest the possibility that high chase concentrations of one amino acid in the medium may be saturating a common transport mechanism, in effect reducing the transport of other amino acids utilizing this mechanism. A combined blockade by both NH4Cl and a high concentration of a single amino acid may in certain sensitive cells result in a significant reduction in protein synthesis.  相似文献   

14.
Abstract: The metabolism of branched-chain amino acids (BCAAs) was studied in cortical synaptosomes. With [15N]leucine (1 mM) as precursor, the cumulative appearance of 15N in [15N]glutamate and [15N]aspartate was 0.2 nmol/min/mg of protein without supplemental α-ketoglutarate and 0.3 nmol/min/mg of protein in the presence of α-ketoglutarate (0.5 mM). The BCAA aminotransferase reaction also proceeded in the “reverse” direction [α-ketoisocaproate (KIC) + glutamate → leucine + α-ketoglutarate]. This was documented by incubating synaptosomes with [15N]glutamate and measuring the formation of [15N]leucine. Without KIC in the medium, the rate of [15N]leucine production was 0.13 nmol/min/mg of protein. In the presence of 25 µM KIC the rate was 0.79 nmol/min/mg of protein and even greater (1.0 nmol/min/mg of protein) in the presence of 500 µM KIC. The reamination of KIC was two- to threefold faster with [2-15N]glutamine as precursor compared with [15N]glutamate. The ketoacid of valine, α-ketoisovalerate (KIV), was reaminated to [15N]valine at a rate comparable to that observed with respect to KIC. The BCAA transaminase mediated not only the bidirectional transfer of amino groups between leucine or valine and glutamate, but also the direct transfer of nitrogen between leucine and valine. This was ascertained in studies in which the incubation medium was supplemented with either [15N]leucine and KIV or [15N]valine and KIC (amino acids at 1 mM and ketoacids at 25 or 500 µM). The rate was faster in the direction of leucine formation at both the lower (6.1-fold) and higher (1.7-fold) KIC concentration. It is suggested that in synaptosomes the BCAA transaminase (a) functions predominantly in the direction of leucine formation and (b) maintains a constant ratio of BCAAs and ketoacids to one other.  相似文献   

15.
In the brain, glutamine synthetase (GS), which is located predominantly in astrocytes, is largely responsible for the removal of both blood-derived and metabolically generated ammonia. Thus, studies with [13N]ammonia have shown that about 25?% of blood-derived ammonia is removed in a single pass through the rat brain and that this ammonia is incorporated primarily into glutamine (amide) in astrocytes. Major pathways for cerebral ammonia generation include the glutaminase reaction and the glutamate dehydrogenase (GDH) reaction. The equilibrium position of the GDH-catalyzed reaction in vitro favors reductive amination of α-ketoglutarate at pH 7.4. Nevertheless, only a small amount of label derived from [13N]ammonia in rat brain is incorporated into glutamate and the α-amine of glutamine in vivo. Most likely the cerebral GDH reaction is drawn normally in the direction of glutamate oxidation (ammonia production) by rapid removal of ammonia as glutamine. Linkage of glutamate/α-ketoglutarate-utilizing aminotransferases with the GDH reaction channels excess amino acid nitrogen toward ammonia for glutamine synthesis. At high ammonia levels and/or when GS is inhibited the GDH reaction coupled with glutamate/α-ketoglutarate-linked aminotransferases may, however, promote the flow of ammonia nitrogen toward synthesis of amino acids. Preliminary evidence suggests an important role for the purine nucleotide cycle (PNC) as an additional source of ammonia in neurons (Net reaction: l-Aspartate?+?GTP?+?H2O?→?Fumarate?+?GDP?+?Pi?+?NH3) and in the beat cycle of ependyma cilia. The link of the PNC to aminotransferases and GDH/GS and its role in cerebral nitrogen metabolism under both normal and pathological (e.g. hyperammonemic encephalopathy) conditions should be a productive area for future research.  相似文献   

16.
Utilization of [15N]glutamate by cultured astrocytes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The metabolism of 0.25 mM-[15N]glutamic acid in cultured astrocytes was studied with gas chromatography-mass spectrometry. Almost all 15N was found as [2-15N]glutamine, [2-15N]glutamine, [5-15N]glutamine and [15N]alanine after 210 min of incubation. Some incorporation of 15N into aspartate and the 6-amino position of the adenine nucleotides also was observed, the latter reflecting activity of the purine nucleotide cycle. After the addition of [15N]glutamate the ammonia concentration in the medium declined, but the intracellular ATP concentration was unchanged despite concomitant ATP consumption in the glutamine synthetase reaction. Some potential sources of glutamate nitrogen were identified by incubating the astrocytes for 24 h with [5-15N]glutamine, [2-15N]glutamine or [15N]alanine. Significant labelling of glutamate was noted with addition of glutamine labelled on either the amino or the amide moiety, reflecting both glutaminase activity and reductive amination of 2-oxoglutarate in the glutamate dehydrogenase reaction. Alanine nitrogen also is an important source of glutamate nitrogen in this system.  相似文献   

17.
A new enzymatic-radiochemical technique of NH4+ determination has been developed that is sensitive and specific. The reaction of α-[1-14C]ketoglutarate with NH4+ yields [1-14C]glutamate as a direct measure of the NH4+ over a range of 0.1 to 10.0 nmol. By the measurement of the NH4+ present in a sample before and after glutamine hydrolysis the assay also allows the determination of glutamine.  相似文献   

18.
The effect of ammonia on Chinese hamster ovary (CHO) cell growth and galactosylation of recombinant immunoglobulin (rIgG) was investigated using shaking flasks with serum free media containing 0–15 mM NH4Cl. The elevated ammonia inhibited cell growth and negatively affected the galactosylation of rIgG. At 15 mM NH4Cl, the proportions of monogalactosylated glycan with fucosex (monogalactosylated glycan with fucose) and digalactosylated glycan with fucose (G2F) were 23.9% and 6.3% lower than those at 0 mM NH4Cl, respectively. To reduce ammonia formation by cells, glutamate was examined as a substitute for glutamine. The use of glutamate reduced the accumulation of ammonia and enhanced the production of rIgG while depressing cell growth. At 6 mM glutamate, ammonia level did not exceed 2 mM, which is only one third of that at 6 mM glutamine. Also, a 1.7-fold increase in the titer of rIgG and specific rIgG productivity, q rIgG, was achieved at 6 mM glutamate. The galactosylation of rIgG was favorable at 6 mM glutamate. The proportion of galactosylated glycans, G1F and G2F, at 6 mM glutamate was 59.8%, but it was 50.4% at 6 mM glutamine. The use of glutamate also increased complement-dependent cytotoxicity activity, one of the effector functions of rIgG. Taken together, substitution of glutamine by glutamate can be considered relevant for the production of rIgG in CHO cells since glutamate not only enhances q rIgG but also generates a higher galactosylation essential for the effector function of rIgG.  相似文献   

19.
The question of arginine uptake by mitochondria is important in that arginine is an allosteric effector of N-acetylglutamate synthetase. Thus, changes in mitochondrial arginine concentration have the potential for acutely modifying levels of N-acetylglutamate, a compound necessary for maximal activity of carbamyl phosphate synthesis. Mitochondria were isolated from chow-fed rats, incubated with [guanido-14C]arginine and were centrifuged through silicon oil into perchloric acid for determination of intramitochondrial metabolites. Arginine was separated from urea by cation-exchange resin. Mitochondrial water space was determined by [14C]urea arising from arginase activity associated with the mitochondrial preparations. Extramatrix space was determined by parallel incubations with [inulin-14C]carboxylic acid or [14C]sucrose There was considerable degradation of arginine by arginase associated with the mitochondrial preparation. This was inhibited by 7 mM ornithine and 7 mM lysine. Arginine was concentrated intramitochondrially to 4-times the extramitochondrial levels. The concentration ratio was decreased in the presence of ornithine and lysine but not with citrulline, NH4Cl, glutamate, glutamate or leucine. No uptake was observed when mitochondria were incubated at 0°C. Mitochondria did not concentrate citrulline.  相似文献   

20.
J. W. Anderson  D. A. Walker 《Planta》1983,159(3):247-253
(Ammonia plus 2-oxoglutarate)-dependent O2 evolution by intact chloroplasts was enhanced three- to five fold by 2 mM L- and D-malate, attaining rates of 9–15 μmol mg-1 Chl h-1. Succinate and fumarate also promoted activity but D-aspartate and, in the presence of aminooxyacetate, L-aspartate inhibited the malate-promoted rate. A reconstituted chloroplast system supported (ammonia plus 2-oxoglutarate)-dependent O2 evolution at rates of 6-11 μmol mg-1 Chl h-1 in the presence of MgCl2, NADP(H), ADP plus Pi (or ATP), ferredoxin and L-glutamate. The concentrations of L-glutamate and ATP required to support 0.5 V max were 5 mM and 0.25 mM, respectively. When the reaction was initiated with NH4Cl, O2 evolution was preceded by a lag phase before attaining a constant rate. The lag phase was shortened by addition of low concentrations of L-glutamine or by preincubating in the dark in the presence of glutamate, ATP and NH4Cl. Oxygen evolution was inhibited by 2 mM azaserine and, provided it was added initially, 2 mM methionine sulphoximine. The (ammonia plus 2-oxoglutarate)-dependent O2 evolution was attributed to the synthesis of glutamine from NH4Cl and glutamate which reacted with 2-oxoglutarate in a reaction catalysed by ferredoxin-specific glutamate synthase using H2O as the ultimate electron donor. The lag phase was attributed to the establishment of a steady-state pool of glutamine. L-Malate did not affect the activity of the reconstituted system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号