首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
Reproduction of flowering plants requires the growth of pollen tubes to deliver immotile sperm for fertilization. Pollen tube growth resembles that of polarized metazoan cells, in that some molecular mechanisms underlying cell polarization and growth are evolutionarily conserved, including the functions of Rho GTPases and the dynamics of the actin cytoskeleton. However, a role for AGC kinases, crucial signaling mediators in polarized metazoan cells, has yet to be shown in pollen tubes. Here we demonstrate that two Arabidopsis AGC kinases are critical for polarized growth of pollen tubes. AGC1.5 and AGC1.7 are pollen-specific genes expressed during late developmental stages. Pollen tubes of single mutants had no detectable phenotypes during in vitro or in vivo germination, whereas those of double mutants were wider and twisted, due to frequent changes of growth trajectory in vitro . Pollen tubes of the double mutant also had reduced growth and were probably compromised in response to guidance cues in vivo . In the agc1.5 background, downregulation of AGC1.7 using an antisense construct phenocopied the growth defect of double mutant pollen tubes, providing additional support for a redundant function of AGC1.5/1.7 in pollen tube growth. Using the actin marker mouse Talin, we show that pollen tubes of double mutants had relatively unaffected longitudinal actin cables but had ectopic filamentous actin, indicating disturbed control of polarity. Our results demonstrate that AGC1.5 and AGC1.7 are critical components of the internal machinery of the pollen tube leading to polarized growth of pollen tubes.  相似文献   

3.
Song XF  Yang CY  Liu J  Yang WC 《Plant physiology》2006,141(3):966-976
The polar growth of plant cells depends on the secretion of a large amount of membrane and cell wall materials at the growing tip to sustain rapid growth. Small GTP-binding proteins, such as Rho-related GTPases from plants and ADP-ribosylation factors (ARFs), have been shown to play important roles in polar growth via regulating intracellular membrane trafficking. To investigate the role of membrane trafficking in plant development, a Dissociation insertion line that disrupted a putative ARF GTPase-activating protein (ARFGAP) gene, AT2G35210, was identified in Arabidopsis (Arabidopsis thaliana). Phenotypic analysis showed that the mutant seedlings developed isotropically expanded, short, and branched root hairs. Pollen germination in vitro indicated that the pollen tube growth rate was slightly affected in the mutant. AT2G35210 is specifically expressed in roots, pollen grains, and pollen tubes; therefore, it is designated as ROOT AND POLLEN ARFGAP (RPA). RPA encodes a protein with an N-terminal ARFGAP domain. Subcellular localization experiments showed that RPA is localized at the Golgi complexes via its 79 C-terminal amino acids. We further showed that RPA possesses ARF GTPase-activating activity and specifically activates Arabidopsis ARF1 and ARF1-like protein U5 in vitro. Furthermore, RPA complemented Saccharomyces cerevisiae glo3Delta gcs1Delta double mutant, which suggested that RPA functions as an ARFGAP during vesicle transport between the Golgi and the endoplasmic reticulum. Together, we demonstrated that RPA plays a role in root hair and pollen tube growth, most likely through the regulation of Arabidopsis ARF1 and ARF1-like protein U5 activity.  相似文献   

4.
In flowering plants, the process of pollen germination and tube growth is required for successful fertilization. A pollen receptor kinase from tomato (Solanum lycopersicum), LePRK2, has been implicated in signaling during pollen germination and tube growth as well as in mediating pollen (tube)-pistil communication. Here we show that reduced expression of LePRK2 affects four aspects of pollen germination and tube growth. First, the percentage of pollen that germinates is reduced, and the time window for competence to germinate is also shorter. Second, the pollen tube growth rate is reduced both in vitro and in the pistil. Third, tip-localized superoxide production by pollen tubes cannot be increased by exogenous calcium ions. Fourth, pollen tubes have defects in responses to style extract component (STIL), an extracellular growth-promoting signal from the pistil. Pollen tubes transiently overexpressing LePRK2-fluorescent protein fusions had slightly wider tips, whereas pollen tubes coexpressing LePRK2 and its cytoplasmic partner protein KPP (a Rop-GEF) had much wider tips. Together these results show that LePRK2 positively regulates pollen germination and tube growth and is involved in transducing responses to extracellular growth-promoting signals.  相似文献   

5.
In Angiosperms, the male gametes are delivered to the female gametes through the maternal reproductive tissue by the pollen tube. Upon arrival, the pollen tube releases the two sperm cells, permitting double fertilization to take place. Although the critical role of the female gametophyte in pollen tube reception has been demonstrated, the underlying mechanisms remain poorly understood. Here, we describe lorelei, an Arabidopsis thaliana mutant impaired in sperm cell release, reminiscent of the feronia/sirène mutant. Pollen tubes reaching lorelei embryo sacs frequently do not rupture but continue to grow in the embryo sac. Furthermore, lorelei embryo sacs continue to attract additional pollen tubes after arrival of the initial pollen tube. The LORELEI gene is expressed in the synergid cells prior to fertilization and encodes a small plant-specific putative glucosylphosphatidylinositol-anchored protein (GAP). These results provide support for the concept of signaling mechanisms at the synergid cell membrane by which the female gametophyte recognizes the arrival of a compatible pollen tube and promotes sperm release. Although GAPs have previously been shown to play critical roles in initiation of fertilization in mammals, flowering plants appear to have independently evolved reproductive mechanisms that use the unique features of these proteins within a similar biological context.  相似文献   

6.
Reproductive isolation is a prerequisite to form and maintain a new species. Multiple prezygotic and postzygotic reproductive isolation barriers have been reported in plants. In the model plant, Arabidopsis thaliana conspecific pollen tube precedence controlled by AtLURE1/PRK6-mediated signaling has been recently reported as a major prezygotic reproductive isolation barrier. By accelerating emergence of own pollen tubes from the transmitting tract, A. thaliana ovules promote self-fertilization and thus prevent fertilization by a different species. Taking advantage of a septuple atlure1null mutant, we now report on the role of AtLURE1/PRK6-mediated signaling for micropylar pollen tube guidance. Compared with wild-type (WT) ovules, atlure1null ovules displayed remarkably reduced micropylar pollen tube attraction efficiencies in modified semi-in vivo A. thaliana ovule targeting assays. However, when prk6 mutant pollen tubes were applied, atlure1null ovules showed micropylar attraction efficiencies comparable to that of WT ovules. These findings indicate that AtLURE1/PRK6-mediated signaling regulates micropylar pollen tube attraction in addition to promoting emergence of own pollen tubes from the transmitting tract. Moreover, semi-in vivo ovule targeting competition assays with the same amount of pollen grains from both A. thaliana and Arabidopsis lyrata showed that A. thaliana WT and xiuqiu mutant ovules are mainly targeted by own pollen tubes and that atlure1null mutant ovules are also entered to a large extent by A. lyrata pollen tubes. Taken together, we report that AtLURE1/PRK6-mediated signaling promotes conspecific micropylar pollen tube attraction representing an additional prezygotic isolation barrier.

A modified ovule targeting assay revealed that AtLURE1/PRK6-mediated signaling promotes micropylar guidance of Arabidopsis thaliana pollen tubes while discriminating tubes of related Arabidopsis lyrata.  相似文献   

7.
8.
9.
Ripe pollen has different soluble and insoluble carbohydrates in variable amounts. Pollen germination and pollen tube growth were studied in a tomato cultivar (Solanum lycopersicum L. cv. Platense) with atypical pollen among tomatoes due to its very low amount or absence of sucrose. In vitro assays were performed using a culture medium without carbohydrates to explore whether there is an autotrophic phase of pollen tube growth, and if there is, describe it, and to analyze the fluctuations of endogenous carbohydrates (soluble carbohydrates, starch, pectins, and callose). Pollen germination was fast (ca. 10 min) and a definite autotrophic phase was observed. Soluble carbohydrates and pectins showed the most substantial changes during this period, even after 10 min. A small amount of callose was observed in the ripe pollen and pollen tubes. Pectins were the most abundant pollen tube wall component. Pollen can be considered starchless; starch was not involved in the autotrophic phase of growth. Other types of substances must be connected with the carbohydrate metabolism, because the fluctuations of the different substances did not follow balanced stoichiometric relationships. Pollen germination and pollen tube elongation was sustained autotrophically, even though sucrose was absent and starch was negligible in pollen grains. The type of pollen reserves and the fast pollen tube formation could be selective advantages in this cultivar.  相似文献   

10.
An actin fringe structure in the subapex plays an important role in pollen tube tip growth. However, the precise mechanism by which the actin fringe is generated and maintained remains largely unknown. Here, we cloned a 2606-bp full-length cDNA encoding a deduced 77-kD fimbrin-like protein from lily (Lilium longiflorum), named FIMBRIN1 (FIM1). Ll-FIM1 was preferentially expressed in pollen and concentrated at actin fringe in the subapical region, as well as in longitudinal actin-filament bundles in the shank of pollen tubes. Microinjection of Ll-FIM1 antibody into lily pollen tubes inhibited tip growth and disrupted the actin fringe. Furthermore, we verified the function of Ll-FIM1 in the fim5 mutant of its closest relative, Arabidopsis thaliana. Pollen tubes of fim5 mutants grew with a larger diameter in early stages but could recover into normal forms in later stages, despite significantly slower growth rates. The actin fringe of the fim5 mutants, however, was impaired during both early and late stages. Impressively, stable expression of fim5pro:GFP:Ll-FIM1 rescued the actin fringe and the growth rate of Arabidopsis fim5 pollen tubes. In vitro biochemical analysis showed that Ll-FIM1 could bundle actin filaments. Thus, our study has identified a fimbrin that may stabilize the actin fringe by cross-linking actin filaments into bundles, which is important for proper tip growth of lily pollen tubes.  相似文献   

11.
12.
Li HM  Chen H  Yang ZN  Gong JM 《FEBS letters》2012,586(7):1027-1031
Pollen germination and tube growth are of essential importance to sexual reproduction of flowering plants. Several biological processes including cell wall biosynthesis and modification are known to be involved in pollen tube growth, though the underlying molecular mechanisms remain largely to be investigated. Here we report the identification and functional characterization of the Arabidopsis gene Cdi, which encodes a putative nucleotide-diphospho-sugar transferase. Cdi is preferentially expressed in pollen grains and pollen tubes. Transient expression of Cdi:GFP fusion protein showed that CDI is localized in the cytosol. Mutation in Cdi impaired pollen germination and pollen tube growth thus leading to disrupted male transmission. These results suggest that Cdi is an essential gene required for pollen germination and tube growth.  相似文献   

13.
 We examined the influence of pollen competitive environment on pollen performance in Mirabilis jalapa. We used the number of pollen grains and the number of pollen tubes per pistil as measures of pollen competition. Pollen germination, pollen tube penetration into the style, and pollen tube growth rates were used as measures of pollen performance. All three measures of pollen performance were affected by the competitive environment. Pollen germination was greatest at intermediate pollen load sizes. The percentage of germinated pollen grains that penetrated the stigma and grew into the style decreased with pollen load size. Pollen tube growth rate in the style was greater and more variable with larger numbers of pollen tubes in the style. Controlling for the degree of selection at the stigma indicated that pollen-pollen or pollen-style interactions were the likely causes of increased growth rates. Received: 28 October 1996 / Revision accepted: 24 January 1997  相似文献   

14.
Fragmentation may negatively affect plant fitness through pollen limitation and increased levels of inbreeding. Effects of fragmentation may vary with regard to life form and breeding system, and few studies exist for wind-pollinated trees. We examined the effects of hand-selfing, varying outcrossing distances and pollen addition on seed mass and germination rate of Polylepis australis BITT. (Rosaceae), a wind-pollinated treeline species endemic to Argentina. We also investigated pollen germination on the stigma and pollen tube growth to determine compatibility resulting from selfing and outcrossing. Selfing reduced seed germination rates with significant differences between open pollination and outcrosses at 30 km. In addition, we found a tendency for pollen germination and pollen tube growth to decrease following selfing. Between-fragment crosses resulted in a trend of higher reproductive output than within-fragment crosses, whereas values were similar between open pollination and between-fragment crosses. Pollen addition did not increase reproductive success neither in small nor in larger fragments. Our results suggest that highly isolated P. australis forests have a potential for inbreeding depression through selfing and within-fragment crosses. However, the results also indicate that pollen flow between P. australis forest fragments is still effective at the current fragmentation level, counteracting negative effects on seed quality resulting from reproductive isolation.  相似文献   

15.
Pollen formation and pollen tube growth are essential for the delivery of male gametes into the female embryo sac for double fertilization. Little is known about the mechanisms that regulate the late developmental process of pollen formation and pollen germination. In this study, we characterized a group of Arabidopsis AGC kinase proteins, NDR2/4/5, involved in pollen development and pollen germination. The NDR2/4/5 genes are mainly expressed in pollen grains at the late developmental stages and in pollen tubes. They function redundantly in pollen formation and pollen germination. At the tricellular stages, the ndr2 ndr4 ndr5 mutant pollen grains exhibit an abnormal accumulation of callose, precocious germination and burst in anthers, leading to a drastic reduction in fertilization and a reduced seed set. NDR2/4/5 proteins can interact with another group of proteins (MOB1A/1B) homologous to the MOB proteins from the Hippo signaling pathway in yeast and animals. The Arabidopsis mob1a mob1b mutant pollen grains also have a phenotype similar to that of ndr2 ndr4 ndr5 pollen grains. These results provide new evidence demonstrating that the Hippo signaling components are conserved in plants and play important roles in sexual plant reproduction.  相似文献   

16.
The Nicotiana tabacum transmitting tissue is a highly specialized file of metabolically active cells that is the pathway for pollen tubes from the stigma to the ovules where fertilization occurs. It is thought to be essential to pollen tube growth because of the nutrients and guidance it provides to the pollen tubes. It also regulates gametophytic self-incompatibility in the style. To test the function of the transmitting tissue in pollen tube growth and to determine its role in regulating prezygotic interspecific incompatibility, genetic ablation was used to eliminate the mature transmitting tissue, producing a hollow style. Despite the absence of the mature transmitting tissue and greatly reduced transmitting-tissue-specific gene expression, self-pollen tubes had growth to the end of the style. Pollen tubes grew at a slower rate in the transmitting-tissue-ablated line during the first 24 h post-pollination. However, pollen tubes grew to a similar length 40 h post-pollination with and without a transmitting tissue. Ablation of the N. tabacum transmitting tissue significantly altered interspecific pollen tube growth. These results implicate the N. tabacum transmitting tissue in facilitating or inhibiting interspecific pollen tube growth in a species-dependent manner and in controlling prezygotic reproductive barriers.  相似文献   

17.
18.
The effect of different external factors on pollen germination and pollen tube growth is well documented for several species. On the other hand the consequences of these factors on the division of the generative nucleus and the formation of callose plugs are less known. In this study we report the effect of medium pH, 2-[N-morpholino]ethanesulfonic acid (MES) buffer, sucrose concentration, partial substitution of sucrose by polyethyleneglycol (PEG) 6000, arginine (Arg), and pollen density on the following parameters: pollen germination, pollen tube length, division of the generative nucleus, and the formation of callose plugs. We also studied the different developmental processes in relation to time. The optimal pH for all parameters tested was 6.7. In particular, the division of the generative nucleus and callose plug deposition were inhibited at lower pH values. MES buffer had a toxic effect; both pollen germination and pollen tube length were lowered. MES buffer also influenced migration of the male germ unit (MGU), the second mitotic division, and the formation of callose plugs. A sucrose concentration of 10% was optimal for pollen germination, pollen tube growth rate and final pollen tube length, as well as for division of the generative nucleus and the production of callose plugs. Partial substitution of sucrose by PEG 6000 had no influence on pollen germination and pollen tube length. However, in these pollen tubes the MGU often did not migrate and no callose plugs were observed. Pollen tube growth was independent of the migration of the MGU and the deposition of callose plugs. In previous experiments Arg proved to be positive for the division of the generative nucleus in pollen tubes cultured in vitro. Here, we found that more pollen tubes had callose plugs and more callose plugs per pollen tube were produced on medium with Arg. After the MGU migrated into the pollen tube (1 h after cultivation), callose plugs were deposited (3 h). After 8 h the first sperm cells were produced. The MGU moved away from the active pollen tube tip until the second pollen mitosis occurred, thereafter the distance from the MGU to the pollen tube tip diminished. Callose plug deposition never started prior to MGU migration into the pollen tube. Pollen tubes without a MGU also lack callose plugs (±30% of the total number of pollen tubes). Furthermore, we found a correlation between the occurrence of sperm cells in pollen tubes and the synthesis of callose plugs.  相似文献   

19.

Background and Aims

Rhamnogalacturonan-II (RG-II) is one of the pectin motifs found in the cell wall of all land plants. It contains sugars such as 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha) and 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo), and within the wall RG-II is mostly found as a dimer via a borate diester cross-link. To date, little is known regarding the biosynthesis of this motif. Here, after a brief review of our current knowledge on RG-II structure, biosynthesis and function in plants, this study explores the implications of the presence of a Golgi-localized sialyltransferase-like 2 (SIA2) protein that is possibly involved in the transfer of Dha or Kdo in the RG-II of Arabidopsis thaliana pollen tubes, a fast-growing cell type used as a model for the study of cell elongation.

Methods

Two heterozygous mutant lines of arabidopsis (sia2-1+/– and qrt1 × sia2-2+/–) were investigated. sia2-2+/– was in a quartet1 background and the inserted T-DNA contained the reporter gene β-glucuronidase (GUS) under the pollen-specific promoter LAT52. Pollen germination and pollen tube phenotype and growth were analysed both in vitro and in vivo by microscopy.

Key Results

Self-pollination of heterozygous lines produced no homozygous plants in the progeny, which may suggest that the mutation could be lethal. Heterozygous mutants displayed a much lower germination rate overall and exhibited a substantial delay in germination (20 h of delay to reach 30 % of pollen grain germination compared with the wild type). In both lines, mutant pollen grains that were able to produce a tube had tubes that were either bursting, abnormal (swollen or dichotomous branching tip) or much shorter compared with wild-type pollen tubes. In vivo, mutant pollen tubes were restricted to the style, whereas the wild-type pollen tubes were detected at the base of the ovary.

Conclusions

This study highlights that the mutation in arabidopsis SIA2 encoding a sialyltransferase-like protein that may transfer Dha or Kdo on the RG-II motif has a dramatic effect on the stability of the pollen tube cell wall.  相似文献   

20.
I hand sectioned styles of Nicotiana glauca at intervals along their length and counted the number of pollen tubes in each section using fluorescence microscopy. Evidence of density dependent growth was found for three stages of pollen growth. Pollen germination on the stigma increased with increasing pollen population size. Pollen tube penetration in the stigma was unaffected by increasing density from low to moderate levels but was reduced at high densities. Pollen tube penetration in the style was enhanced by increasing density. This enhanced growth in the style was apparently confounded by interference among pollen tubes growing at high densities. In particular, the area of tissue able to support pollen tube growth decreases from the stigma into the lower style, which could cause overcrowding of pollen tubes growing at high densities. Enhanced pollen tube penetration with increasing density combined with interference among pollen tubes growing at high densities resulted in greater mean pollen tube lengths for populations with moderate densities. The shift from density independent growth in the stigma to positively density dependent growth in the style may represent a shift from autotrophic to heterotrophic growth stages of pollen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号