首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Low temperature is an important environmental factor influencing plant growth and development. In this study, we report the characterization of a genetic locus, HOS2, which is defined by three Arabidopsis thaliana mutants. The hos2-1, hos2-2 and hos2-3 mutations result in enhanced expression of RD29A and other stress genes under low temperature treatment. Gene expression in response to osmotic stress or ABA is not affected in the hos2 mutants. Genetic analysis indicates that the hos2 mutations are recessive and in a nuclear gene. Compared with the wild-type plants, the hos2-1 mutant plants are less capable of developing freezing tolerance when treated with low non-freezing temperatures. However, the hos2-1 mutation does not impair the vernalization response. These results indicate that HOS2 is a negative regulator of low temperature signal transduction important for plant cold acclimation.  相似文献   

3.
Xiong L  Ishitani M  Lee H  Zhu JK 《The Plant cell》2001,13(9):2063-2083
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the los5 mutants, but the response to abscisic acid (ABA) remains unaltered. RNA gel blot analysis indicates that the los5 mutation reduces the induction of several stress-responsive genes by cold and severely diminishes or even completely blocks the induction of RD29A, COR15, COR47, RD22, and P5CS by osmotic stresses. los5 mutant plants are compromised in their tolerance to freezing, salt, or drought stress. los5 plants are ABA deficient, as indicated by increased transpirational water loss and reduced accumulation of ABA under drought stress in the mutant. A comparison with another ABA-deficient mutant, aba1, reveals that the impaired low-temperature gene regulation is specific to the los5 mutation. Genetic tests suggest that los5 is allelic to aba3. Map-based cloning reveals that LOS5/ABA3 encodes a molybdenum cofactor (MoCo) sulfurase. MoCo sulfurase catalyzes the generation of the sulfurylated form of MoCo, a cofactor required by aldehyde oxidase that functions in the last step of ABA biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. Our results show that LOS5/ABA3 is a key regulator of ABA biosynthesis, stress-responsive gene expression, and stress tolerance.  相似文献   

4.
5.
Phospholipase D (PLD; EC 3.1.4.4) plays an important role in membrane lipid hydrolysis and in mediation of plant responses to a wide range of stresses. PLDalpha1 abrogation through antisense suppression in Arabidopsis thaliana resulted in a significant increase in freezing tolerance of both non-acclimated and cold-acclimated plants. Although non-acclimated PLDalpha1-deficient plants did not show the activation of cold-responsive C-repeat/dehydration-responsive element binding factors (CBFs) and their target genes (COR47 and COR78), they did accumulate osmolytes to much higher levels than did the non-acclimated wild-type plants. However, a stronger expression of COR47 and COR78 in response to cold acclimation and to especially freezing was observed in PLDalpha1-deficient plants. Furthermore, a slower activation of CBF1 was observed in response to cold acclimation in these plants compared to the wild-type plants. Typically, cold acclimation resulted in a higher accumulation of osmolytes in PLDalpha1-deficient plants than in wild-type plants. Inhibition of PLD activity by using lysophosphatidylethanolamine (LPE) also increased freezing tolerance of Arabidopsis, albeit to a lesser extent than did the PLD antisense suppression. Exogenous LPE induced expression of COR15a and COR47 in the absence of cold stimulus. These results suggest that PLDalpha1 plays a key role in freezing tolerance of Arabidopsis by modulating the cold-responsive genes and accumulation of osmolytes.  相似文献   

6.
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the los5 mutants, but the response to abscisic acid (ABA) remains unaltered. RNA gel blot analysis indicates that the los5 mutation reduces the induction of several stress-responsive genes by cold and severely diminishes or even completely blocks the induction of RD29A, COR15, COR47, RD22, and P5CS by osmotic stresses. los5 mutant plants are compromised in their tolerance to freezing, salt, or drought stress. los5 plants are ABA deficient, as indicated by increased transpirational water loss and reduced accumulation of ABA under drought stress in the mutant. A comparison with another ABA-deficient mutant, aba1, reveals that the impaired low-temperature gene regulation is specific to the los5 mutation. Genetic tests suggest that los5 is allelic to aba3. Map-based cloning reveals that LOS5/ABA3 encodes a molybdenum cofactor (MoCo) sulfurase. MoCo sulfurase catalyzes the generation of the sulfurylated form of MoCo, a cofactor required by aldehyde oxidase that functions in the last step of ABA biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. Our results show that LOS5/ABA3 is a key regulator of ABA biosynthesis, stress-responsive gene expression, and stress tolerance.  相似文献   

7.
8.
9.
10.
Osmotic stress activates the expression of many plant genes through ABA-dependent as well as ABA-independent signaling pathways. We report here the characterization of a novel mutant of Arabidopsis thaliana, hos5-1, which exhibits increased expression of the osmotic stress responsive RD29A gene. The expression of several other stress genes are also enhanced by the hos5-1 mutation. The enhanced expression is specific to ABA and osmotic stress because low temperature regulation of these genes is not altered in the mutant. Genetic analysis indicated that hos5-1 is a recessive mutation in a single nuclear gene on chromosome III. Double mutant analysis of hos5-1 and the ABA-deficient aba1-1 as well as the ABA-insensitive abi1-1 mutant indicated that the osmotic stress hypersensitivity of hos5-1 is not affected by ABA deficiency or insensitivity. Furthermore, combined treatments of hos5-1 with ABA and osmotic stress had an additive effect on RD29A-LUC expression. These results suggest that the osmotic stress hypersensitivity in hos5-1 may be ABA-independent. The germination of hos5-1 seeds was more resistant to ABA. However, the hos5-1 mutation did not influence stomatal control and only slightly affected the regulation of growth and proline accumulation by ABA. The hos5-1 mutation reveals a negative regulator of osmotic stress-responsive gene expression shared by ABA-dependent and ABA-independent osmotic stress signaling pathways.  相似文献   

11.
Lee BH  Lee H  Xiong L  Zhu JK 《The Plant cell》2002,14(6):1235-1251
To study low-temperature signaling in plants, we previously screened for cold stress response mutants using bioluminescent Arabidopsis plants that express the firefly luciferase reporter gene driven by the stress-responsive RD29A promoter. Here, we report on the characterization and cloning of one mutant, frostbite1 (fro1), which shows reduced luminescence induction by cold. fro1 plants display reduced cold induction of stress-responsive genes such as RD29A, KIN1, COR15A, and COR47. fro1 leaves have a reduced capacity for cold acclimation, appear water-soaked, leak electrolytes, and accumulate reactive oxygen species constitutively. FRO1 was isolated through positional cloning and found to encode a protein with high similarity to the 18-kD Fe-S subunit of complex I (NADH dehydrogenase, EC 1.6.5.3) in the mitochondrial electron transfer chain. Confocal imaging shows that the FRO1:green fluorescent protein fusion protein is localized in mitochondria. These results suggest that cold induction of nuclear gene expression is modulated by mitochondrial function.  相似文献   

12.
13.
14.
Lee BH  Henderson DA  Zhu JK 《The Plant cell》2005,17(11):3155-3175
  相似文献   

15.
16.
17.
植物抗寒及其基因表达研究进展   总被引:6,自引:0,他引:6  
曹琴  孔维府  温鹏飞 《生态学报》2004,24(4):806-811
植物经过逐渐降低的温度从而提高抗寒能力 ,这个过程被人们称为低温驯化。植物低温驯化过程是一个复杂的生理、生化和能量代谢变化过程 ,这些变化主要包括膜系统的稳定性、可溶性蛋白的积累和小分子渗透物质 ,比如脯氨酸、糖等 ,这些变化中的一些是植物抗寒必需的 ,而另外一些变化不是必需的。主要对冷害和低温生理生化变化、低温诱导表达基因的功能和作用、低温驯化的调节机制及其信号转导方面进行了综述。通过差别筛选 c DNA文库的方法已经鉴定了许多低温诱导表达、进而提高植物抗寒能力的基因 ,其中有脱水素、COR基因和 CBF1转录因子等。低温信号的感受、转导和调节表达是低温驯化的关键环节 ,低温信号的转导过程与干旱胁迫之间具有一定的交叉 ,这为利用 ABA等来提高植物抗寒能力成为可能 ,相信不久的将来人们可以通过提高植物抗寒能力从而增加经济产量成为现实。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号