首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 343 毫秒
1.
以单性结实的龟井温州蜜柑和自花授粉结实的鄂柑1号橘为试材,对整个果实发育期的子房(幼果)、果皮和果肉的硼镁含量变化进行了测定。结果表明:1)龟井花前至花期子房硼含量就已较高,花后下降;而鄂柑1号花期子房硼含量相对较低,花后有一显著上升;两品种子房(幼果)镁含量变化无明显差异,花后均趋下降。2)两品种果皮硼含量变幅较小,而果肉硼含量变幅相对较大,且均在果实膨大期出现明显的上升高峰;两品种果皮和果肉镁含量在果实发育前期均相对较高,在果实发育的中后期则趋明显下降。  相似文献   

2.
对单性结实的龟井温州蜜柑和自花结实的鄂柑1号花期前后子房(幼果)和春梢叶的果胶酸钙、草酸钙、水溶性果胶和原果胶含量变化进行研究。结果表明:(1)两品种子房(幼果)和春梢叶中果胶酸钙含量变化均相类似且变幅小,但鄂柑1号的含量相对较高;两品种草酸钙的含量变化则因器官不同而有所区别,在春梢叶中,两者呈类似的上升趋势,而于子房(幼果)中两者却相反,龟井蜜柑花后趋下降,鄂柑1号却明显上升;鄂柑1号子房(幼果)的草酸钙含量较龟井蜜柑高。(2)两品种子房(幼果)和春梢叶原果胶含量动态相似,均于花后出现明显上升;而水溶性果胶动态差异明显,龟井蜜柑子房(幼果)和春梢叶在花后6d均出现上升峰值;鄂柑1号的水溶性果胶和原果胶含量均相对较高。  相似文献   

3.
对单性结实的龟井温州蜜柑(以下简称龟井)和自花结实的鄂柑1号橘(以下简称鄂柑1号)果实发育过程中不同部位的IAA、ZR和GA3的含量变化进行了测定。结果表明:(1)两品种果皮IAA含量呈相似的变化趋势,均于果实增大期间出现明显高峰,但鄂柑1号的IAA高峰值显著较高;二者果皮ZR含量动态却相反,增大期间龟井果皮ZR的含量相对较高且趋上升,而鄂柑1号却趋下降;二者果皮GA3含量均于增大期间出现类似的上升过程,之后均趋下降。(2)龟井果肉IAA、ZR和GA3含量前期均较高,此后均明显下降并居较低水平;而鄂柑1号果肉IAA和GA3均于增大期间出现明显的上升且含量明显高于龟井,而ZR含量与龟井一样呈下降趋势,但ZR的含量更低。(3)鄂柑1号种子的IAA、ZR和GA3在花后72d均相对较高,之后急剧回落至相对较低的稳定水平。  相似文献   

4.
对单性结实的龟井温州蜜柑(以下简称龟井)和自花结实的鄂柑1号橘(以下简称鄂柑1号)果实发育过程中不同部位的IAA、ZR和GA3的含量变化进行了测定。结果表明:(1)两品种果皮IAA含量呈相似的变化趋势,均于果实增大期间出现明显高峰,但鄂柑1号的IAA高峰值显著较高;二者果皮ZR含量动态却相反,增大期间龟井果皮ZR的含量相对较高且趋上升,而鄂柑1号却趋下降;二者果皮GA3含量均于增大期间出现类似的上升过程,之后均趋下降。(2)龟井果肉IAA、ZR和GA3含量前期均较高,此后均明显下降并居较低水平;而鄂柑1号果肉IAA和GA3均于增大期间出现明显的上升且含量明显高于龟井,而ZR含量与龟井一样呈下降趋势,但ZR的含量更低。(3)鄂柑1号种子的IAA、ZR和GA3在花后72d均相对较高,之后急剧回落至相对较低的稳定水平。  相似文献   

5.
肖家欣  彭抒昂 《广西植物》2007,27(5):775-779
以单性结实的国庆1号温州蜜柑和自花结实的华农本地早橘为材料,研究了果实生长发育过程中果实不同部位的吲哚乙酸(IAA)、脱落酸(ABA)、赤霉素(GA1/3)和玉米素核苷(ZR)含量的变化。结果表明:(1)国庆1号果皮IAA、GA1/3和ZR含量在幼果阶段均相对较高,随后果皮和果肉IAA含量均趋下降,而在果实膨大期内果肉ABA和果皮、果肉GA1/3、ZR含量均出现上升峰值,果实成熟采收时果皮和果肉ABA含量均明显回升。(2)华农本地早种子、果皮和果肉IAA及其种子ABA含量均在果实膨大期内出现明显峰值,在幼果阶段至果实膨大初期内种子GA1/3和ZR含量均居较高并出现明显上升,对应的果皮、果肉4种内源激素水平均相对较低且变幅小。还就两结实类型柑橘果实生长发育与其内源IAA、ABA、GA1/3和ZR含量动态的关系进行了讨论。  相似文献   

6.
受精促进子房(幼果)对钙的吸收,受精完成后的黄花子房(幼果)中钙含量迅速上升,未受精的子房(幼果)中钙含量远低于同期受精的果实.受精前后钙含量变化与其中IAA和GA3含量变化相似;NAA、GA3处理促进钙的吸收.IAA和GA3可能同时参与受精前后树体中的钙向幼果(子房)的运输过程.  相似文献   

7.
西天目山金钱松树轮中五种金属元素的含量分析   总被引:1,自引:0,他引:1  
本文报道西天目山金钱松(Pseudolarix kaempferi Cord.)木质部中铝、铁、钙、锰、锌5种元素含量和累积量自1711年以来的变化情况。1711~1900年期间,钙的含量(μg/g)明显增大,铁和锰稍有上升,而铝和锌则略有下降;最近25年来,铝、铁、锰元素的含量升高,而锌含量下降。1711~1900年期间,5种元素的累积量(μg/Yr)都轻微下降,但最近20~25年来,铁、铝、锰的累积量又明显上升,锌元素变化不大。笔者认为铝、铁、钙、锰、锌元素在1711~1900年出现下降,可能是由于植被遭破坏的缘故,而在近25年中,铝、铁、锰元素的急速上升,则可能是工业污染的结果。  相似文献   

8.
荔枝果实发育过程中内源多胺含量的变化   总被引:4,自引:0,他引:4  
荔枝果实中多胺含量以亚精胺(Spd)最高,腐胺(Put)其次,精胺(Spm)最低,三者分别于花后7 d和28 d各出现1个高峰.果皮、假种皮和种子中总多胺含量以各自发育初期为最高,随后急速下降,快速膨大期间的变化则不大.花后0~21 d,单果中Put、Spd和Spm含量最低;花后28 d,出现第1个小高峰;果实快速膨大期Spd含量急剧升高,Put和Spm升高较慢.  相似文献   

9.
该研究以红色晚熟苹果新品种‘瑞阳’及其母本‘秦冠’、父本‘富士’为试验材料,分析各品种果实发育过程中的生长动态、色泽变化以及采收期对其果实品质的影响,为品种栽培管理和推广应用提供参考。结果表明:(1)在果实生长发育期,‘瑞阳’单果质量的变化与双亲接近,单果质量的日增长高峰出现在花后105d,果实发育前期纵径增长较大,果形指数大,在发育后期果形指数降低,至成熟时果形指数达到0.86,介于父母本‘秦冠’和‘富士’之间。(2)套袋处理使果实着色期的色泽参数a*值和花青苷含量上升,但品种间存在差异,套袋处理对‘瑞阳’的色泽参数a*值和花青苷含量影响不大。(3)随果实采后天数的延长,各采收期‘瑞阳’果实淀粉指数逐渐上升,硬度和可滴定酸逐渐下降,而可溶性固形物含量先上升后下降;‘瑞阳’果实在花后174d采收时,果实的硬度和可滴定酸下降均较少,且果实可溶性固形物含量保持在较高水平,能较好地维持该品种的果实品质。研究发现,‘瑞阳’苹果果实膨大期出现在花后105d前后,果实套袋对其表面色泽和花青苷含量影响不大,在陕西渭北以花后174d前后采收为宜。  相似文献   

10.
皱皮木瓜果实发育后期品质变化及其成熟阶段的划分初探   总被引:2,自引:0,他引:2  
以湖北长阳产皱皮木瓜为材料,测定果实发育后期果实鲜质量、果长、果径、果色、果实硬度以及果肉干物质量、可溶性糖含量、总酸含量和总黄酮含量等品质指标的动态变化,划分不同成熟阶段,为判断果实适宜采收期、实现优质生产提供理论参考。结果表明:(1)皱皮木瓜果实发育后期果实鲜质量、果长、果径、果肉干物质量和可溶性糖含量均呈现上升趋势;果色由绿色、黄绿色渐变为淡黄色到黄色;果实硬度、果肉总酸和总黄酮含量呈先上升后下降趋势。(2)各品质指标快速变化的时间区域存在差异,果实鲜质量在花后105~150d增加较快,果色在150d后逐渐变黄,果实硬度在花后135~165d快速下降,果肉总酸、总黄酮含量则在花后105~120d快速增加至峰值。(3)根据主成分分析结果和各品质指标的变化特点,可初步将皱皮木瓜果实发育后期划分为未成熟(花后105d之前)、早期成熟(花后120~150d)和成熟(花后165~180d)3个阶段。研究表明,随着果实成熟度的提高,皱皮木瓜果实鲜质量、果色、果肉干物质量、可溶性糖含量等指标不断升高,果实硬度逐渐下降,其食用加工品质不断提升,而在早期成熟阶段(花后120~150d)果实的药用品质则相对较高。  相似文献   

11.
Yang  X.  Römheld  V.  Marschner  H. 《Plant and Soil》1993,155(1):441-444
Pot experiments were conducted with a calcareous soil (Inceptisol) to elucidate the effects of bicarbonate (0 and 20 mM) and root zone temperature (15° and 25°C) on the uptake of Zn, Fe, Mn and Cu by "Zn-efficient" and "Zn-inefficient" rice cultivars. Bicarbonate decreased concentrations and total uptake of Zn in shoots of "Zn-inefficient" cultivars, especially of IR 26 at 25°C, but not in Zn-efficient cultivars. Bicarbonate decreased concentrations and uptake of Fe in shoots of Zn inefficient cultivars, particularly in IR 26. Concentrations and total uptake of Mn were lower in bicarbonate treatment in the Zn-inefficient cultivars at 15°C, and in all cultivars at 25°C. However, concentration and uptake of Cu were not affected by bicarbonate in all cultivars. Compared to the 25°C root zone temperature, the concentrations and total uptake of both Zn and Cu in shoots at 15°C were lower in Zn-inefficient than in the Zn-efficient cultivars. The results indicate that Zn-efficiency in rice is causally related to high tolerance of plant to elavated bicarbonate concentrations in soil solution.  相似文献   

12.
The aim of the study was to examine the response of pear (Pyrus communis L.) trees to soil and foliar applications of boron (B). The experiment was carried out during 2000–2001 in a commercial orchard in Central Poland on mature `Conference' pear trees grafted on Pyrus communis var. caucasica seedlings planted at a spacing of 4 × 2.5 m on a sandy loam soil with a low hot water-extractable B status. Annually, foliar sprays with B were applied. (i) before full bloom (at green and white bud stage, and when 1–5% of flowers was at full bloom), (ii) after flowering (at petal fall, and 7 and 14 days after the end of flowering), or (iii) postharvest in fall (approximately 6 weeks before leaf fall). Spray treatments involved application of B at a rate of 0.2 kg ha–1 in spring or 0.8 kg ha–1 in fall. Additionally, other trees were supplied with soil-applied B at the bud break stage at a rate of 2 kg ha–1. Trees untreated with B served as the control. The results revealed that foliar applications of B before full bloom or after harvest increased fruit set and fruit yield. Tree vigor, mean fruit weight, firmness, soluble solids concentration and titratable acidity of fruits at harvest were not affected by B treatments. Foliar B sprays before full bloom or after harvest increased B concentrations in flowers, and both leaves and fruitlets at 40 days after flowering. Only the foliar treatments after flowering and soil fertilization with B increased the content of this microelement in fruit and leaves at 80 and 120 days after full bloom. Foliar B application before full bloom or after harvest increased calcium (Ca) in fruitlets at 40 days after full bloom, in fruit, and in leaves at 80 and 120 days after full bloom. Nitrogen (N), phosphorus (P), potassium (K), and magnesium (Mg) in plant tissues were not affected by B fertilization. After storage, and also after the ripening period, fruits from the trees sprayed with B before full bloom or after harvest had higher firmness and titratable acidity than those from the control trees. After the ripening period, fruits from the trees sprayed with B before full bloom or after harvest had lower membrane permeability and were less sensitive to internal browning than the control fruits. These findings indicate that prebloom and postharvest B sprays are successful in increasing pear tree yielding and in improving fruit storability under the conditions of low B availability in the soil.  相似文献   

13.
The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in maize (Zea mays L.) were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain). Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N) levels. Fe, Mn and Cu RIEs (average 64.4, 18.1and 5.3 g, respectively) were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60%) and decreased Zn concentrations in straw (a 56% decrease) and grain (decreased from 16.9 to 12.2 mg kg−1) rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively). The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.  相似文献   

14.
Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their acquisition via the shoot. We conducted field experiments to investigate the effects of intercropping with turnip (Brassica campestris L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.) on the iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations in the grain and their acquisition via the above-ground shoots of maize (Zea mays L.). Compared with monocropped maize grain, the grain of maize intercropped with legumes showed lower concentrations of Fe, Mn, Cu, and Zn and lower values of their corresponding harvest indexes. The micronutrient concentrations and harvest indexes in grain of maize intercropped with turnip were the same as those in monocropped maize grain. Intercropping stimulated the above-ground maize shoot acquisition of Fe, Mn, Cu and Zn, when averaged over different phosphorus (P) application rates. To our knowledge, this is the first report on the effects of intercropping on micronutrient concentrations in maize grain and on micronutrients acquisition via maize shoots (straw+grain). The maize grain Fe and Cu concentrations, but not Mn and Zn concentrations, were negatively correlated with maize grain yields. The concentrations of Fe, Mn, Cu, and Zn in maize grain were positively correlated with their corresponding harvest indexes. The decreased Fe, Mn, Cu, and Zn concentrations in grain of maize intercropped with legumes were attributed to reduced translocation of Fe, Mn, Cu, and Zn from vegetative tissues to grains. This may also be related to the delayed senescence of maize plants intercropped with legumes. We conclude that turnip/maize intercropping is beneficial to obtain high maize grain yield without decreased concentrations of Fe, Mn, Cu, and Zn in the grain. Further research is required to clarify the mechanisms underlying the changes in micronutrient concentrations in grain of intercropped maize.  相似文献   

15.
Summary Concentration of N, P, K, Ca, Mg and S in summer groundnut crop was higher than in kharif while Zn, Fe, Mn and Cu contents were higher in summer crop. Kernel's N, P and Zn; Leaflet's Ca and Mn; Stem's K and Fe; Root's S and Cu and Petiole's Mg contents were highest. Shell's N, P, K, Mg, S, Zn and Cu; Kernel's Ca, Fe and Mn contents were the least. N, P, K, S, Zn and Cu concentrations decreased linearly as the crop grew. Ca, Mg, Fe and Mn concentrations did not display any distinct pattern. Ca concentration was positively correlated with pod yield in both the seasons.  相似文献   

16.
H Zhao  L Wu  T Chai  Y Zhang  J Tan  S Ma 《Journal of plant physiology》2012,169(13):1243-1252
Synchrotron radiation X-ray fluorescence (SRXRF) and inductively coupled plasma mass spectrometry were used to estimate major, minor and trace elements in Cu-, Zn- and Mn-treated Phytolacca americana. The effects of the addition of Cu, Zn and Mn on morphological parameters, such as root length, shoot height, and fresh and dry weights of shoots and roots, were also examined. In addition, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT) and the expression of Fe-SOD, Cu/Zn-SOD, metallothionein-2 and glutathione S-transferase (GST) exposed to the highest amounts of Cu, Zn or Mn were detected. Our results confirmed the following: (1) Zn supplementation leads to chlorosis, disturbed elemental homeostasis and decreased concentrations of micro- and macroelements such as Fe, Mg, Mn, Ca and K. Cu competed with Fe, Mn and Zn uptake in plants supplemented with 25μM Cu. However, no antagonistic interactions took place between Cu, Zn, Mn and Fe uptake in plants supplemented with 100μM Cu. Mn supplementation at various concentrations had no negative effects on elemental deficits. Mn was co-located with high concentrations of Fe and Zn in mature leaves and the concentrations of macro elements were unchanged. (2) P. americana supplemented with increased concentrations of Zn and Cu exhibited lower biomass production and reduced plant growth. (3) When plants were supplemented with the highest Zn and Cu concentrations, symptoms of toxicity corresponded to decreased SOD or CAT activities and increased APX and GPX activities. However, Mn tolerance corresponded to increased SOD and CAT activities and decreased POD and APX activities. Our study revealed that heavy metals partially exert toxicity by disturbing the nutrient balance and modifying enzyme activities that induce damage in plants. However, P. americana has evolved hyper accumulating mechanisms to maintain elemental balance and redox homeostasis under excess Mn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号