首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
To establish a simple and sensitive method to detect protein N-myristoylation, the usefulness of a newly developed cell-free protein synthesis system derived from insect cells for detecting protein N-myristoylation by in vitro metabolic labeling was examined. The results showed that in vitro translation of cDNA coding for N-myristoylated protein in the presence of [(3)H]myristic acid followed by SDS-PAGE and fluorography is a useful method for rapid detection of protein N-myristoylation. Differential labeling of N-myristoylated model proteins with [(3)H]leucine, [(3)H]myristic acid, and [(35)S]methionine revealed that the removal of the initiating Met during the N-myristoylation reaction could be detected using this system. Analysis of the N-myristoylation of a series of model proteins with mutated N-myristoylation motifs revealed that the amino acid sequence requirements for the N-myristoylation reaction in this system are quite similar to those observed in the rabbit reticulocyte lysate system. N-myristoylation of tBid (a posttranslationally N-myristoylated cytotoxic protein that could not be expressed in transfected cells) was successfully detected in this assay system. Thus, metabolic labeling in an insect cell-free protein synthesis system is an effective strategy to detect co- and posttranslational protein N-myristoylation irrespective of the cytotoxicity of the protein.  相似文献   

2.
To establish a strategy to identify dually fatty acylated proteins from cDNA resources, seven N-myristoylated proteins with cysteine (Cys) residues within the 10 N-terminal residues were selected as potential candidates among 27 N-myristoylated proteins identified from a model human cDNA resource. Seven proteins C-terminally tagged with FLAG tag or EGFP were generated and their susceptibility to protein N-myristoylation and S-palmitoylation were evaluated by metabolic labeling with [3H]myristic acid or [3H]palmitic acid either in an insect cell-free protein synthesis system or in transfected mammalian cells. As a result, EEPD1, one of five proteins (RFTN1, EEPD1, GNAI1, PDE2A, RNF11) found to be dually acylated, was shown to be a novel dually fatty acylated protein. Metabolic labeling experiments using G2A and C7S mutants of EEPD1-EGFP revealed that the palmitoylation site of EEPD1 is Cys at position 7. Analysis of the intracellular localization of EEPD1 C-terminally tagged with FLAG tag or EGFP and its G2A and C7S mutants revealed that the dual acylation directs EEPD1 to localize to the plasma membrane. Thus, dually fatty acylated proteins can be identified from cDNA resources by cell-free and cellular metabolic labeling of N-myristoylated proteins with Cys residue(s) close to the N-myristoylated N-terminus.  相似文献   

3.
To evaluate the ability of an insect cell-free protein synthesis system to generate proper N-terminal cotranslational protein modifications such as removal of the initiating Met, N-acetylation, and N-myristoylation, several mutants were constructed using truncated human gelsolin (tGelsolin) as a model protein. Tryptic digests of these mutants were analyzed by MALDI-TOF MS and MALDI-quadrupole-IT-TOF MS. The wild-type tGelsolin, which is an N-myristoylated protein, was found to be N-myristoylated when myristoyl-CoA was added to the in vitro translation reaction mixture. N-myristoylation did not occur on the Gly-2 to Ala mutant, in which the N-myristoylation motif was disrupted, whereas this mutant was found to be N-acetylated after removal of the initiating Met. Analyses of Gly-2 to His and Leu-3 to Asp mutants revealed that the amino acids at positions 2 and 3 strongly affect the susceptibility of the nascent peptide chain to removal of the initiating Met and to N-acetylation, respectively. These results suggest that N-terminal modifications occurring in the insect cell-free protein synthesis system are quite similar to those observed in the mammalian protein synthesis system. Thus, a combination of the cell-free protein synthesis system with MS is an effective strategy to analyze protein modifications.  相似文献   

4.
To detect the posttranslational N-myristoylation of caspase substrates, the susceptibility of the newly exposed N-terminus of known caspase substrates to protein N-myristoylation was evaluated by in vivo metabolic labeling with [(3)H]myristic acid in transfected cells using a fusion protein in which the query sequence was fused to a model protein. As a result, it was found that the N-terminal nine residues of the newly exposed N-terminus of the caspase-cleavage product of cytoskeletal actin efficiently direct the protein N-myristoylation. Metabolic labeling of COS-1 cells transiently transfected with cDNA coding for full-length truncated actin (tActin) revealed the efficient incorporation of [(3)H]myristic acid into this molecule. When COS-1 cells transiently transfected with cDNA coding for full-length actin were treated with staurosporine, an apoptosis-inducing agent, an N-myristoylated tActin was generated. Immunofluorescence staining coupled with MitoTracker or fluorescence tagged-phalloidin staining revealed that exogenously expressed tActin colocalized with mitochondria without affecting cellular and actin morphology. Taken together, these results demonstrate that the C-terminal 15 kDa fragment of cytoskeletal actin is posttranslationally N-myristoylated upon caspase-mediated cleavage during apoptosis and targeted to mitochondria.  相似文献   

5.
Protein N-myristoylation has been recognized as a cotranslational protein modification. Recently, it was demonstrated that protein N-myristoylation could occur posttranslationally, as in the case of the pro-apoptotic protein BID and cytoskeletal actin. Our previous study showed that the N-terminal nine residues of the C-terminal caspase cleavage product of human gelsolin, an actin-regulatory protein, efficiently direct the protein N-myristoylation. In this study, to analyze the posttranslational N-myristoylation of gelsolin during apoptosis, metabolic labeling of gelsolin and its caspase cleavage products expressed in COS-1 cells with [3H]myristic acid was performed. It was found that the C-terminal caspase cleavage product of human gelsolin (tGelsolin) was efficiently N-myristoylated. When COS-1 cells transiently transfected with gelsolin cDNA were treated with etoposide or staurosporine, apoptosis-inducing agents, N-myristoylated tGelsolin was generated, as demonstrated by in vivo metabolic labeling. The generation of posttranslationally N-myristoylated tGelsolin during apoptosis was also observed on endogenous gelsolin expressed in HeLa cells. Immunofluorescence staining and subcellular fractionation experiment revealed that exogenously expressed tGelsolin did not localize to mitochondria but rather was diffusely distributed in the cytoplasm. To study the role of this modification in the anti-apoptotic activity of tGelsolin, we constructed the bicistronic expression plasmid tGelsolin-IRES-EGFP capable of overexpressing tGelsolin concomitantly with EGFP. Overexpression of N-myristoylated tGelsolin in COS-1 cells using this plasmid significantly inhibited etoposide-induced apoptosis, whereas overexpression of the non-myristoylated tGelsolinG2A mutant did not cause resistance to apoptosis. These results indicate that posttranslational N-myristoylation of tGelsolin does not direct mitochondrial targeting, but this modification is involved in the anti-apoptotic activity of tGelsolin.  相似文献   

6.
To establish a strategy to generate N-acylated proteins modified with fatty acids having a specific chain length, tGelsolin-streptag, an epitope-tagged model protein having an N-myristoylation motif, was synthesized using an insect cell-free protein synthesis system in the presence of acyl-CoA with various fatty acid chain lengths. It was found that the fatty acid species attached to the N-termini fully depended on the acyl-CoA species added to the reaction mixture. N-Acylated proteins with fatty acid chain lengths of 8, 10, 12, and 14 were generated successfully.  相似文献   

7.
The use of the host cellular machinery is essential for pathogenic viruses to replicate in host cells. HIV and SIV borrow the host-derived N-myristoyl-transferase and its substrate, myristoyl-CoA, for coupling a saturated C(14) fatty acid (myristic acid) to the N-terminal glycine residue of the Nef protein. This biochemical reaction, referred to as N-myristoylation, assists its targeting to the plasma membrane, thereby supporting the immunosuppressive activity proposed for the Nef protein. In this study, we show that the host immunity is equipped with CTLs capable of sensing N-myristoylation of the Nef protein. A rhesus macaque CD8(+) T cell line was established that specifically recognized N-myristoylated, but not unmodified, peptides of the Nef protein. Furthermore, the population size of N-myristoylated Nef peptide-specific T cells was found to increase significantly in the circulation of SIV-infected monkeys. Thus, these results identify N-myristoylated viral peptides as a novel class of CTL target Ag.  相似文献   

8.
In eukaryotic cellular proteins, protein N-myristoylation has been recognized as a protein modification that occurs mainly on cytoplasmic or nucleoplasmic proteins. In this study, to search for a eukaryotic N-myristoylated transmembrane protein, the susceptibility of the N-terminus of several G-protein-coupled receptors (GPCRs) to protein N-myristoylation was evaluated by in vitro and in vivo metabolic labeling. It was found that the N-terminal 10 residues of B96Bom, a Bombyx mori GPCR, efficiently directed the protein N-myristoylation. Analysis of a tumor necrosis factor (TNF) fusion protein with the N-terminal 90 residues of B96Bom at its N-terminus revealed that (a) transmembrane domain 1 of B96Bom functioned as a type I signal anchor sequence, (b) the N-myristoylated N-terminal domain (58 residues) was translocated across the membrane, and (c) two N-glycosylation motifs located in this domain were efficiently N-glycosylated. In addition, when Ala4 in the N-myristoylation motif of B96Bom90-TNF, Met-Gly-Gln-Ala-Ala-Thr(1-6), was replaced with Asn to generate a new N-glycosylation motif, Asn-Ala-Thr(4-6), efficient N-glycosylation was observed on this newly introduced N-glycosylation site in the expressed protein. These results indicate that the N-myristoylated N-terminus of B96Bom is translocated across the membrane and exposed to the extracellular surface. To our knowledge, this is the first report showing that a eukaryotic transmembrane protein can be N-myristoylated and that the N-myristoylated N-terminus of the protein can be translocated across the membrane.  相似文献   

9.
To establish a strategy for the comprehensive identification of human N‐myristoylated proteins, the susceptibility of human cDNA clones to protein N‐myristoylation was evaluated by metabolic labeling and MS analyses of proteins expressed in an insect cell‐free protein synthesis system. One‐hundred‐and‐forty‐one cDNA clones with N‐terminal Met‐Gly motifs were selected as potential candidates from ~2000 Kazusa ORFeome project human cDNA clones, and their susceptibility to protein N‐myristoylation was evaluated using fusion proteins, in which the N‐terminal ten amino acid residues were fused to an epitope‐tagged model protein. As a result, the products of 29 out of 141 cDNA clones were found to be effectively N‐myristoylated. The metabolic labeling experiments both in an insect cell‐free protein synthesis system and in the transfected COS‐1 cells using full‐length cDNA revealed that 27 out of 29 proteins were in fact N‐myristoylated. Database searches with these 27 cDNA clones revealed that 18 out of 27 proteins are novel N‐myristoylated proteins that have not been reported previously to be N‐myristoylated, indicating that this strategy is useful for the comprehensive identification of human N‐myristoylated proteins from human cDNA resources.  相似文献   

10.
In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.  相似文献   

11.
To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources.  相似文献   

12.
We synthesized a novel linker (1) with biotin, alkyne and amino groups for the identification of target proteins using a small molecule that contains an azide group (azide probe). The alkyne in the linker bound the azide probe via an azide-alkyne Huisgen cycloaddition. A protein cross-linker effectively bound the conjugate of the linker and an azide probe with a target protein. The covalently bound complex was detected by western blotting. Linker 1 was applied to a model system using an abscisic acid receptor, RCAR/PYR/PYL (PYL). Cross-linked complexes of linker 1, the azide probes and the target proteins were successfully visualized by western blotting. This method of target protein identification was more effective than a previously developed method that uses a second linker with biotin, alkyne, and benzophenone (linker 2) that acts to photo-crosslink target proteins. The system developed in this study is a method for identifying the target proteins of small bioactive molecules and is different from photo-affinity labelling.  相似文献   

13.
14.
A protocol for selective and site-specific enzymatic labeling of proteins is described. The method exploits the protein co-/post-translational modification known as myristoylation, the transfer of myristic acid (a 14-carbon saturated fatty acid) to an N-terminal glycine catalyzed by the enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT). Escherichia coli, having no endogenous NMT, is used for the coexpression of both the transferase and the target protein to be labeled, which participate in the in vivo N-terminal attachment of synthetically derived tagged analogs of myristic acid bearing a 'clickable' tag. This tag is a functional group that can undergo bio-orthogonal ligation via 'click' chemistry, for example, an azide, and can be used as a handle for further site-specific labeling in vitro. Here we provide protocols for in vivo N-terminal tagging of recombinant protein, and the synthesis and application of multifunctional reagents that enable protein labeling via click chemistry for affinity purification and detection by fluorescence. In addition to general N-terminal protein labeling, the protocol would be of particular use in providing evidence for native myristoylation of proteins of interest, proof of activity/selectivity of NMTs and cross-species reactivity of NMTs without resorting to the use of radioactive isotopes.  相似文献   

15.
A novel linker containing biotin, alkyne and benzophenone groups (1) was synthesized to identify target proteins using a small molecule probe. This small molecule probe contains an azide group (azide probe) that reacts with an alkyne in 1 via an azide–alkyne Huisgen cycloaddition. Cross-linking of benzophenone to the target protein formed a covalently bound complex consisting of the azide probe and the target protein via 1. The biotin was utilized via biotin–avidin binding to identify the cross-linked complex. To evaluate the effectiveness of 1, it was applied in a model system using an allene oxide synthase (AOS) from the model moss Physcomitrella patens (PpAOS1) and an AOS inhibitor that contained azide group (3). The cross-linked complex consisting of PpAOS1, 1 and 3 was resolved via SDS–PAGE and visualized using a chemiluminescent system. The method that was developed in this study enables the effective identification of target proteins.  相似文献   

16.
Eukaryotic cell-free systems based on wheat germ and Spodoptera frugiperda insect cells were equipped with an orthogonal amber suppressor tRNA–synthetase pair to synthesize proteins with a site-specifically incorporated p-azido-l-phenylalanine residue in order to provide their chemoselective fluorescence labeling with azide-reactive dyes by Staudinger ligation. The specificity of incorporation and bioorthogonality of labeling within complex reaction mixtures was shown by means of translation and fluorescence detection of two model proteins: β-glucuronidase and erythropoietin. The latter contained the azido amino acid in proximity to a signal peptide for membrane translocation into endogenous microsomal vesicles of the insect cell-based system. The results indicate a stoichiometric incorporation of the azido amino acid at the desired position within the proteins. Moreover, the compatibility of cotranslational protein translocation, including glycosylation and amber suppression-based incorporation of p-azido-l-phenylalanine within a cell-free system, is demonstrated. The presented approach should be particularly useful for providing eukaryotic and membrane-associated proteins for investigation by fluorescence-based techniques.  相似文献   

17.
3,4-Dihydroxyphenylacetic acid (DOPAC) is one of the colonic microflora-produced catabolites of quercetin 4′-glucoside (Q4′G). Although the interaction of DOPAC with cellular proteins might be involved in its biological activity, the actual proteins have not yet been identified. In this study, we developed a novel tag-free DOPAC probe to label the targeted proteins by the copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) and verified its efficacy. Various labeled proteins were detected by the DOPAC probe with the azide labeled biotin and a horseradish peroxidase (HRP)-streptavidin complex. Furthermore, a pulldown assay identified Keap1 and aryl hydrocarbon receptor (AhR) as the target proteins for the phase 2 enzyme up-regulation.  相似文献   

18.

Background

N-myristoylation is a crucial covalent modification of numerous eukaryotic and viral proteins that is catalyzed by N-myristoyltransferase (NMT). Prokaryotes are lacking endogeneous NMT activity. Recombinant production of N-myristoylated proteins in E. coli cells can be achieved by coexpression of heterologous NMT with the target protein. In the past, dual plasmid systems were used for this purpose.

Methodology/Principal Findings

Here we describe a single vector system for efficient coexpression of substrate and enzyme suitable for production of co- or posttranslationally modified proteins. The approach was validated using the HIV-1 Nef protein as an example. A simple and efficient protocol for production of highly pure and completely N-myristoylated Nef is presented. The yield is about 20 mg myristoylated Nef per liter growth medium.

Conclusions/Significance

The single vector strategy allows diverse modifications of target proteins recombinantly coexpressed in E. coli with heterologous enzymes. The method is generally applicable and provides large amounts of quantitatively processed target protein that are sufficient for comprehensive biophysical and structural studies.  相似文献   

19.
Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号