首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Juvenile haddock Melanogrammus aeglefinus ( c. 39 g) were exposed to either a handling stressor (1 min out of water) or heat shock (increase from 10 to 15° C for 1 h), and plasma cortisol, plasma glucose and gill hsp70 levels were determined before, and at 1, 3, 6, 12, 24 and 48 h post-stress. The pattern of cortisol increase was similar following both stressors, with levels increasing by 25-fold at 1 h post-stress, but returning to pre-stress levels (2–5 ng ml−1) by 3 h. In contrast, neither handling nor heat shock caused an increase in plasma glucose levels. Although gill hsp70 was detected, presumably constitutive levels, in both control and heat shocked groups, there were not significant changes in gill hsp70 levels after exposure to heat shock. The lack of glucose and hsp70 responses to these typical stressors is consistent with previous studies on Atlantic cod Gadus morhua , and suggests that the stress physiology of Gadidae differs from the 'typical' teleost.  相似文献   

2.
The levels of heat‐shock proteins of the 70 kDa family (Hsp70s) were measured in different soft tissues of Atlantic cod Gadus morhua from different locations and after exposure to various thermal conditions: acute temperature increments (1° C day−1), mid‐term (73 days at 4–15° C) and long‐term thermal acclimation (278 days at 8–15° C), and seasonal and latitudinal temperature variations (field samples). Tissue specific distribution patterns of Hsp70s were observed: liver > gills > red blood cells > brain > white muscle. Thus, different tissues may have required different levels of protection by Hsp70s, and possibly this was related to the rate of protein synthesis. There were no differences in tissue Hsp70s between Arctic cod populations (Arctic, i.e . Barents and White Seas, Norwegian coast, and North or Baltic Seas). No changes in Hsp70s levels were observed in response to temperature variation of any intensity (acute fluctuation or seasonal and latitudinal) within the range of physiological temperatures (4–15° C) in wild and laboratory Atlantic cod. This confirms previous observations that changes in Hsp70 caused by such temperature variation are often small in fishes. Probably, the constitutive level of Hsp70s in Atlantic cod was high enough to overcome potentially harmful effects of temperature variations within the physiological range. A suppressing effect of high temperature (15° C) has already been observed at a systematic level (as reduced rate of somatic growth), whereas it is not reflected in modified Hsp70s. Therefore, Hsp70s apparently played a secondary role in defining thermal tolerance limits in Atlantic cod. These conclusions are in line with a recent concept of thermal tolerance which indicated that the first line of thermal limitation in the cold and warm is a loss in aerobic scope.  相似文献   

3.
In this study we measured plasma cortisol, plasma glucose, plasma sodium and potassium, and liver and gill hsp70 levels in juvenile matrinxã (Brycon amazonicus) subjected to a 96 h exposure to phenol (0, 0.2, and 2.0 ppm), and the effect of this exposure on their ability to respond to a subsequent handling stress. Fish were sampled prior to initiation of exposure and 96 h, and at 1, 6, 12, and 24 h post-handling stress. During the 96 h exposure, plasma cortisol and glucose levels remained unchanged in all treatments. While plasma sodium levels were significantly reduced in all groups, plasma potassium levels only decreased in fish exposed to 0 and 0.2 ppm of phenol. Liver hsp70 levels decreased significantly at 96 h in fish exposed to 2.0 ppm of phenol. All groups, except fish exposed to 0.2 ppm of phenol, were able to increase plasma cortisol and glucose levels after handling stress. Fish exposed to 2.0 ppm of phenol showed decreased gill and liver hsp70 levels after the handling stress. Our data suggest that exposure to phenol may compromise the ability of matrinxã to elicit physiological responses to a subsequent stressor.  相似文献   

4.
The osmolality and ionic composition of the blood of juvenile Atlantic cod Gadus morhua and their response to conditions of reduced temperature and salinity in summer‐ and winter‐acclimated individuals was investigated. Haematocrit percentage was relatively stable throughout the experimental procedures. Summer‐acclimated juvenile Atlantic cod had higher plasma osmolality than winter‐acclimated fish in ambient conditions. Plasma Na+ levels were, however, higher in winter conditions, while Cl did not vary between seasons. Temperature reduction (12, 9 and 6° C in summer and to 6 and 4° C in winter) induced a significant response in plasma osmolality and Na+ levels in summer, but only in Na+ levels in winter‐acclimated fish. A pronounced effect was seen in the summer 6° C treatment. Salinity treatments (24, 16 and 8) had a significant effect on almost all the variables in both summer and winter and resulted generally in dilution of ionic and osmotic concentrations of the plasma. This effect was pronounced in the lowest temperature treatments, with the greatest reduction observed in the summer 6° C treatment. This could suggest that winter‐acclimated fish are physiologically adapted to cope with lower seawater temperatures as opposed to summer‐acclimated fish.  相似文献   

5.
The effect of thermal environment on condition factor was examined for six different size-classes of Atlantic cod Gadus morhua fed to satiation. A weight–length relationship for 8 to 1303 g fish reared at 4–20°C indicated an allometric growth ( W  =  aL b , a  = 0.0045, b  = 3.257) of cod. Changes in relative condition factor ( K rel) with temperature were described with a second order polynomial. The most pronounced effect of temperature on body condition was found in the smallest size-classes, but the curves flattened with increased size. Temperature had size-dependent effects on the relative condition factor obtained from an overall weight–length relationship for all fish in the experiment, i.e. K rel increased with weight at 4°C, but decreased with weight at 16 and 20°C. K rel remained high for most size-classes at 8 and 12°C. The slopes ( b -values) of the weight–length relationships decreased linearly with temperatures from 4 to 16°C.  相似文献   

6.
Critical swimming speed ( U crit) and rate of oxygen consumption of Pacific cod Gadus macrocephalus acclimated to 4 and 11° C were determined to assess the influence of water temperature on performance. The physiological effect of exercise trials on fish held at two temperatures was also assessed by comparing haematocrit and plasma concentrations of cortisol, metabolites and ions collected from fish before and after testing. The U crit of fish acclimated and exercised at 4° C did not differ from those acclimated and exercised at 11° C [1·07 body lengths (total length) s−1]. While the standard metabolic rate of 11° C acclimated fish was 28% higher than that of 4° C fish, no significant difference was observed between fish acclimated at the two temperatures. Plasma concentrations of cortisol, glucose and lactate increased significantly from pre- to post-swim in both groups, yet only concentrations of cortisol differed significantly between temperature treatments. Higher concentrations of cortisol in association with greater osmoregulatory disturbance in animals acclimated at the lower temperature indicate that the lower water temperature acted as an environmental stressor. Lack of significant differences in U crit between temperature treatments, however, suggests that Pacific cod have robust physiological resilience with respect to swimming performance within temperature changes from 4 to 11° C.  相似文献   

7.
Heat shock (25° C) of 10° C-acclimated rainbow trout Oncorhynchus mykiss led to increases in heat shock protein 70 (hsp70) mRNA in blood, brain, heart, liver, red and white muscle, with levels in blood being amongst the highest. Hsp30 mRNA also increased with heat shock in all tissues with the exception of blood. When rainbow trout blood was heat shocked in vitro , both hsp70 and hsp30 mRNA increased significantly. In addition, these in vitro experiments demonstrated that blood from fish acclimated to 17° C water had a lower hsp70 mRNA heat shock induction temperature than did 5° C acclimated fish (20 v. 25° C). The hsp30 mRNA induction temperature (25° C), however, was unaffected by thermal acclimation. While increases in hsp70 mRNA levels in blood may serve as an early indicator of temperature stress in fish, tissue type, thermal history and the particular family of hsp must be considered when evaluating stress by these molecular means.  相似文献   

8.
The average rate of swimming speed and the physiological status or stress of individual Atlantic cod Gadus morhua was monitored in response to short-term acute (STA) hypoxia ( i.e. partial pressure of oxygen,     , reduced from 20·9 to 4·3 kPa within 1 h at 10° C). The STA hypoxic response of Atlantic cod was associated with a large primary increase (+29%) and a large secondary decrease (−54%) in swimming speed as well as major physiological stress ( e.g. plasma cortisol = 214·7 ng ml−1 and blood lactate = 2·41 mmol l−1).  相似文献   

9.
Short-term environmental manipulations during the early juvenile stage have a large impact on harvesting size of Atlantic cod Gadus morhua nearly 3 years later. A group of juvenile Atlantic cod (initial mass 9·5 g) were reared for 3 months under simulated natural photoperiod or continuous light, and a range of temperatures (7, 10, 13 and 16° C, and a group called T-step, i.e. with temperature reduced successively from 16 to 13 and 10° C). After termination of the laboratory trial, the fish were moved to sea pens and reared at ambient conditions for 30 months before harvesting in June 2006. Observed growth gain from the 3 month laboratory trial was still persistent following the 30 months of sea-pen ongrowing. The T-step group displayed 15, 13, 1 and 10% superior mass gain respectively than the groups initially at 7, 10, 13 and 16° C at harvest in June 2006. Similarly, rearing under continuous light during the initial 3 month period during the early juvenile stage resulted in 1–9% larger size at harvesting compared to fish reared at simulated natural photoperiod. Gonado-somatic and hepato-somatic indices were similar in all groups. Contribution to the understanding of the mechanism behind size variation in adult fish can have wide range applications for Atlantic cod fisheries and aquaculture.  相似文献   

10.
We measured changes in free and total plasma cortisol levels, plasma glucose, gill hsp70 levels, and growth in haddock (Melanogrammus aeglefinus) subjected to a long-term handling stress (15 s out of water, each day, for 4 weeks), and the effect of this long-term stress on the ability of haddock to respond to an acute stressor. The acute stressor was a single handling stress, and fish were sampled at 1, 6, and 12 h post-stress. During the long-term stress study, free and total plasma cortisol levels increased significantly (10-fold) in the stressed group after the second week. However, the percentage of free cortisol was already significantly elevated by the first week (control 17%, stressed 55%), and remained high during the second week (control 35% and stressed 65%). After 3 and 4 weeks of handling, both free and total cortisol declined in stressed fish to levels that were not significantly different from pre-stress values. Control fish grew significantly more than stressed fish (by 32% and 18%, respectively) over the 4 week study, and condition factor only increased in control fish. Although fish from the control group showed elevated total plasma cortisol levels (to 47 ng mL(-1)) 1 h after the acute stress, and the levels in stressed fish were comparable to those for the control fish, no significant increase in plasma cortisol was measured in the group subjected to the long-term stress. Free plasma cortisol levels did not increase significantly in either group following the acute stress. However, free plasma cortisol levels were significantly higher in long-term stress group, as compared with the control group, at 6 h post-stress. Plasma glucose and gill hsp70 levels were not altered by either the long-term stress or acute stressor. Our data indicate that cortisol (free and total), but not glucose or hsp70, appears to be adequate to assess short- and long-term stress in haddock.  相似文献   

11.
Tilapia aurea muscle and liver adenylate nucleotides, the adenylate energy charge (EC), plasma glucose, cortisol and chloride were monitored during acute and chronic temperature stress. Muscle EC is unaffected during acute cold water exposure but decreases significantly when tilapia are exposed to chronic, sublethal, low temperature stress. The decrease in EC is primarily the result of a decrease in ATP concentration. Plasma glucose and cortisol increase when tilapia are exposed to 11–12° C for 60 min, 11 days, and a 5-week period. Incomplete compensation is evident in 5-week acclimated fish since glucose and cortisol levels are intermediate between controls and acutely stressed fish. Acclimation to 35° C does not significantly affect plasma glucose and cortisol compared to controls (22° C). Plasma chloride is relatively unaffected by acute and chronic temperature stress. Liver adenylates are not significantly affected when tilapia are subjected to a sudden drop in water temperature (22° down to 11° C). EC is a useful indicator of chronic low temperature stress in T. aurea , while plasma glucose and cortisol are sensitive to both acute and chronic temperature stress.  相似文献   

12.
Haematocrit, haemoglobin concentration, plasma osmolarity and plasma glucose concentration of the Antarctic nototheniid fishes Pagothenia borchgrevinki and Trematomus bernacchii were monitored during 24 h periods of exposure to 3 and 6° C. The same haematological variables were also measured in P. borchgrevinki following a 5–6 week period of 4° C acclimation. The first plasma glucose measurements in acutely thermally‐stressed Antarctic nototheniids revealed a delayed hyperglycaemia which related well to the relatively slow stress‐related elevation of plasma cortisol in these species. Plasma osmolarity of both species was unchanged by acute 3° C exposure, but exhibited a delayed and transient increase during acute exposure to 6° C. Haematocrit was unaltered in T. bernacchii during the acute temperature increases but was elevated in the relatively active P. borchgrevinki . Following 5–6 weeks of warm‐acclimation (4° C) the plasma glucose concentration, haematocrit and haemoglobin concentration of P. borchgrevinki were not significantly different from fish at −1° C, but plasma osmolarity decreased toward the level found in temperate‐water teleosts.  相似文献   

13.
14.
15.
Ontogenetic changes in temperature preference of Atlantic cod   总被引:4,自引:0,他引:4  
Final thermal preferendum ( T ) experiments were conducted in a horizontal thermal gradient tank from the beginning of August 2001 to mid‐November 2001 using Atlantic cod Gadus morhua from 6·5 to 79·0 cm fork length ( L F). The value of T varied significantly ( P  < 0·005) with L F( T  = 7·23–0·054 L F), with smaller (younger) fish choosing higher temperatures than larger (older) fish. The preferendum varied from 6·9° C for fish of 6·5 cm to 3·0° C for those of 79·0 cm. Experiments comparing fish positions in the gradient tank between thermal gradients of 0·5–11·0 and 4·5–14·5° C demonstrated that fish positions were determined by temperature selection instead of undesirable tank effects. This study is the first to demonstrate the effect of ontogeny on temperature preferences of a marine fish species.  相似文献   

16.
Cold shocks: a stressor for common carp   总被引:2,自引:0,他引:2  
The stress response of common carp Cyprinus carpio was studied by evaluating plasma cortisol, glucose and lactate after single or multiple rapid temperature drops (ΔT: 7, 9 or 11° C). All three amplitudes used induced a significant rise in plasma cortisol levels. Peaks occurred within 20 min after onset of the cold shock. No stress-related secondary metabolic changes were observed in any of the experiments described: plasma glucose levels remained unaffected and plasma lactate levels dropped. Carp of 60 days old showed a significant stress response, although plasma cortisol levels were lower than those observed in carp of 120 days. Furthermore, fish that had experienced multiple cold shocks showed an overall lower cortisol response than fish experiencing a single cold shock, indicating that habituation to this stressor occurred.  相似文献   

17.
Hypoxia tolerance in Atlantic cod   总被引:2,自引:0,他引:2  
Oxygen saturation levels that killed 50 and 5% of cod Gadus morhua over 96 h averaged 21·2 and 27·7%, respectively. No fish survived at 10% saturation and only a few survived at 16% saturation, whereas no mortality occurred at 34 and 40% oxygen saturation. Since metabolic rate and oxygen consumption increase with increasing temperature, we hypothesized that cod would be less tolerant to hypoxic conditions at 6 than at 2° C. However, temperature (2 and 6° C) had no measurable impact on cod survival. Small (mean & S.D.; 45·2 ± 4·2 cm) and large (57·5 ± 3·8 cm) cod had the same tolerance to hypoxia. At the end of the experiments, hypoxia had a significant effect on blood haematocrit, mean cellular haemoglobin content, liver lactate, plasma glucose and plasma lactate, but accounted for only a small fraction (< 10%) of the variation, except for plasma lactate which exhibited a strong response with concentrations increasing progressively with decreasing levels of oxygen saturation. Temperature had a significant effect on most variates in normoxia and hypoxia. Variates also affected by oxygen level showed significant interactions between oxygen and size or temperature effects. However, these interactions accounted for only a small proportion of the variation. Physiological parameters indicated that extending the duration of our tests beyond 96 h would not have changed our estimates of the lethal thresholds. Hypoxic conditions are a permanent feature of the deep waters of the Gulf of St Lawrence. This study shows that a significant portion of the benthic habitats in the Gulf are uninhabitable for cod which would be expected to avoid waters below 28% oxygen saturation.  相似文献   

18.
In this study, effects of stock origin, fish size, water flow and temperature on time of river ascent of adult Atlantic salmon Salmo salar were tested. Brood stocks were collected in eight Norwegian rivers situated between 59 and 69° N. The fish were reared to smolts, individually tagged and released in the River Imsa, south-west Norway (59° N). Adults from all stocks approached the Norwegian coast concurrently, but Atlantic salmon ≥70 cm in natural tip length entered coastal water slightly earlier during summer than smaller fish. Atlantic salmon <70 cm, however, ascended the river significantly earlier and at lower water flow and higher water temperature than larger fish. Although largest in size, the fish from the northern populations (62–69° N) ascended the River Imsa almost 1 month earlier than those from the south (59–60° N). They seemed less restricted by the environmental factors than the fish originating from the more southern rivers. There was no apparent trend among years in time of river ascent. Maximum ascent per day occurred at water discharges between 12·5 and 15 m3 s−1 and at water temperatures between 10 and 12·5° C. There was a significant positive correlation between water flow and river ascent during the first part of the upstream run from July to September with best correlation for September, when multiple regression analysis indicated that water temperature had an additional positive effect. Stock origin, fish size and water discharge were important variables influencing the upstream migration of Atlantic salmon in small rivers.  相似文献   

19.
The growth properties of juvenile spotted wolffish Anarhichas minor reared at 4, 6, 8 and 12° C, and a group reared under 'temperature steps', (T‐step) i.e . with temperature reduced successively from 12 to 9 and 6° C were investigated. Growth rate and feed efficiency ration was significantly influenced by temperature and fish size. Overall growth rate was highest at 6° C (0·68% day−1) and lowest at 12° C (0·48% day−1), while the 4 and 8° C, and the T‐step groups had similar overall growth rates, i.e . 0·59, 0·62 and 0·51% day−1 respectively. Optimal temperature for growth ( T opt G ) and feed efficiency ratio (Topt FCE) decreased as fish size increased, indicating an ontogenetic reduction in T opt G and T opt FCE. The results suggest a T opt G of juvenile spotted wolffish in the size range 135–380 g, dropping from 7·9° C for 130–135 g to 6·6° C for 360–380 g juveniles. The T opt FCE dropped from 7·4° C for 120–150 g to 6·5° C for 300–380 g juveniles. A wider parabolic regression curve between growth, feed efficiency ratio and temperature as fish size increased, may indicate increased temperature tolerance with size. Individual growth rates varied greatly at all time periods within the experimental temperatures, but at the same time significant size rank correlations were maintained and this may indicate stable size hierarchies in juvenile spotted wolffish.  相似文献   

20.
To determine if molybdenum (Mo) is a chemical stressor, fingerling and juvenile rainbow trout (Oncorhynchus mykiss) were exposed to waterborne sodium molybdate (0, 2, 20, or 1,000 mg l-1 of Mo) and components of the physiological (plasma cortisol, blood glucose, and hematocrit) and cellular (heat shock protein [hsp] 72, hsp73, and hsp90 in the liver, gills, heart, and erythrocytes and metallothionein [MT] in the liver and gills) stress responses were measured prior to initiation of exposure and at 8, 24, and 96 h. During the acute exposure, plasma cortisol, blood glucose, and hematocrit levels remained unchanged in all treatments. Heat shock protein 72 was not induced as a result of exposure and there were no detectable changes in total hsp70 (72 and 73), hsp90, and MT levels in any of the tissues relative to controls. Both fingerling and juvenile fish responded with similar lack of apparent sensitivity to Mo exposure. These experiments demonstrate that exposure to waterborne Mo of up to 1,000 mg l-1 did not activate a physiological or cellular stress response in fish. Information from this study suggests that Mo water quality guidelines for the protection of aquatic life are highly protective of freshwater fish, namely rainbow trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号