首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Telomere lengthening early in development   总被引:1,自引:0,他引:1  
Stem cells and cancer cells maintain telomere length mostly through telomerase. Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts. How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.  相似文献   

2.
Telomere length shortens with cellular division, and leukocyte telomere length is used as a marker for systemic telomere length. The hippocampus hosts adult neurogenesis and is an important structure for episodic memory, and carriers of the apolipoprotein E ε4 allele exhibit higher hippocampal atrophy rates and differing telomere dynamics compared with non-carriers. The authors investigated whether leukocyte telomere length was associated with hippocampal volume in 57 cognitively intact subjects (29 ε3/ε3 carriers; 28 ε4 carriers) aged 49–79 yr. Leukocyte telomere length correlated inversely with left (rs = −0.465; p = 0.011), right (rs = −0.414; p = 0.025), and total hippocampus volume (rs = −0.519; p = 0.004) among APOE ε3/ε3 carriers, but not among ε4 carriers. However, the ε4 carriers fit with the general correlation pattern exhibited by the ε3/ε3 carriers, as ε4 carriers on average had longer telomeres and smaller hippocampi compared with ε3/ε3 carriers. The relationship observed can be interpreted as long telomeres representing a history of relatively low cellular proliferation, reflected in smaller hippocampal volumes. The results support the potential of leukocyte telomere length being used as a biomarker for tapping functional and structural processes of the aging brain.  相似文献   

3.
Oocyte maturation and embryonic development are sensitive to DNA damage. Compared with somatic cells or oocytes, little is known about the response to DNA damage in early preimplantation embryos. In this study, we examined DNA damage checkpoints and DNA repair mechanisms in parthenogenetic preimplantation porcine embryos. We found that most of the etoposide-treated embryos showed delay in cleavage and ceased development before the blastocyst stage. In DNA-damaged embryos, the earliest positive TUNEL signals were detected on Day 5 of in vitro culture. Caffeine, which is an ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3-related protein) kinase inhibitor, and KU55933, which is an ATM kinase inhibitor, were equally effective in rescuing the etoposide-induced cell-cycle blocks. This indicates that ATM plays a central role in the regulation of the checkpoint mechanisms. Treating the embryos with histone deacetylase inhibitors (HDACi) increased embryonic development and reduced etoposide-induced double-strand breaks (DSBs). The mRNA expression of genes involved in non-homologous end-joining (NHEJ) or homologous recombination (HR) pathways for DSB repair was reduced upon HDACi treatment in 5-day-old embryos. Furthermore, HDACi treatment increased the expression levels of pluripotency-related genes (OCT4, SOX2 and NANOG) and decreased the expression levels of apoptosis-related genes (CASP3 and BAX). These results indicate that early embryonic cleavage and development are disturbed by etoposide-induced DNA damage. ATMi (caffeine or KU55933) treatment bypasses the checkpoint while HDACi treatment improves the efficiency of DSB repair to increase the cleavage and blastocyst rate in porcine early preimplantation embryos.  相似文献   

4.
5.
Aneuploid embryos diagnosed by FISH-based preimplantation genetic screening (PGS) have been shown to yield euploid lines of human embryonic stem cells (hESCs) with a relatively high frequency. Given that the diagnostic procedure is usually based on the analysis of 1–2 blastomeres of 5 to 10-cell cleavage-stage embryos, mosaicism has been a likely explanation for the phenomena. However, FISH-based PGS can have a significant rate of misdiagnosis, and therefore some of those lines may have been derived from euploid embryos misdiagnosed as aneuploid. More recently, coupling of trophectoderm (TE) biopsy at the blastocyst stage and array-CGH lead to a more informative form of PGS. Here we describe the establishment of a new line of hESCs from an embryo with a 43,XX,dup(9q),+12,-14,-15,-18,-21 chromosomal content based on array-CGH of TE biopsy. We show that, despite the complex chromosomal abnormality, the corresponding hESC line BR-6 is euploid (46,XX). Single nucleotide polymorphism analysis showed that the embryo´s missing chromosomes were not duplicated in BR-6, suggesting the existence of extensive mosaicism in the TE lineage.  相似文献   

6.
Telomere length, a biomarker of aging and age-related diseases, exhibits wide variation between individuals. Common genetic variation may explain some of the individual differences in telomere length. To date, however, only a few genetic variants have been identified in the previous genome-wide association studies. As emerging data suggest epigenetic regulation of telomere length, we investigated 72 single nucleotide polymorphisms (SNPs) in 46 genes that involve DNA and histone methylation as well as telomerase and telomere-binding proteins and DNA damage response. Genotyping and quantification of telomere length were performed in blood samples from 989 non-Hispanic white participants of the Sister Study, a prospective cohort of women aged 35–74 years. The association of each SNP with logarithmically-transformed relative telomere length was estimated using multivariate linear regression. Six SNPs were associated with relative telomere length in blood cells with p-values<0.05 (uncorrected for multiple comparisons). The minor alleles of BHMT rs3733890 G>A (p = 0.041), MTRR rs2966952 C>T (p = 0.002) and EHMT2 rs558702 G>A (p = 0.008) were associated with shorter telomeres, while minor alleles of ATM rs1801516 G>A (p = 0.031), MTR rs1805087 A>G (p = 0.038) and PRMT8 rs12299470 G>A (p = 0.019) were associated with longer telomeres. Five of these SNPs are located in genes coding for proteins involved in DNA and histone methylation. Our results are consistent with recent findings that chromatin structure is epigenetically regulated and may influence the genomic integrity of telomeric region and telomere length maintenance. Larger studies with greater coverage of the genes implicated in DNA methylation and histone modifications are warranted to replicate these findings.  相似文献   

7.
Nandi S  Chauhan MS  Palta P 《Theriogenology》1998,50(8):1251-1262
The objective of the present study was to investigate the effects of sperm concentration and presence or absence of cumulus cells on fertilization, cleavage rate and subsequent embryonic development upto the blastocyst stage in buffalo. Cumulus-oocyte-complexes (COCs) obtained from slaughterhouse ovaries were matured in vitro in TCM-199 + 10% FBS + 5 micrograms/mL FSH-P for 24 h. After maturation the COCs were either used as such (cumulus-intact) or freed from attached cumulus cells by repeated pipetting (cumulus-free). Frozen-thawed buffalo spermatozoa were treated with 10 micrograms/mL heparin and 2.5 mM caffeine for sperm capacitation. Oocytes were fertilized in vitro with 1 to 2, 4 to 5 or 9 to 10 million sperm/mL and the cleavage rate was recorded 42 to 44 h post insemination. The cleaved embryos were co-cultured with buffalo oviductal epithelial cells for 10 d post insemination, and the uncleaved oocytes were fixed and stained with aceto-orcein for determination of the penetration rate. The cleavage rate and the proportion of cleaved embryos that developed to morula and blastocyst stages were significantly higher (P < 0.05) whereas the proportion of degenerated oocytes and those that became arrested at the 2 to 16-cell stage were significantly lower (P < 0.05) with cumulus-intact than with cumulus-free oocytes at the 3 sperm concentrations. Increasing the sperm concentration increased the cleavage rate significantly (P < 0.05) from 1 to 2 million through 9 to 10 million sperm/mL but had no effect on the proportion of cleaved embryos that developed to morula and blastocyst stages. In conclusion, the results of the present study suggest that cumulus cells have a positive influence on fertilization, cleavage and subsequent embryonic development. Increase in sperm concentration increases cleavage rate without affecting subsequent embryonic development.  相似文献   

8.
In vitro fertilization (IVF) and embryonic development of mature and meiotically arrested porcine oocytes were compared in the present study. After in vitro maturation (IVM) of cumulus-oocyte complexes for 48 h, 75.4% of them extruded a visible polar body (PB). Most of the oocytes with a first polar body (PB+ group) were at the metaphase-II (M-II) stage (91.4%). Most of the oocytes without a visible polar body (PB− group) appeared to be arrested at the germinal vesicle (GV) (41.6%) and metaphase-I (M-I) (34.0%) stages. After IVF of oocytes (day of IVF = Day 0), there was no difference between PB+ and PB groups in rates of sperm penetration, mono-spermy, however oocyte activation rate after penetration was greater in the PB+ than in the PB− group (P < 0.05). On Day 2, there was no difference between rates of embryos cleaved at the 2–4 cell stages in PB+ and PB− groups (42.1 ± 48.8% and 33.6 ± 2.1%, respectively). On Day 4, the rate of PB+ embryos developing beyond the 4-cell stage was greater than that of PB− embryos (P < 0.05, 31.7 ± 3.9% and 14.1 ± 1.5%, respectively), and PB+ embryos had more cells than the PB− embryos (P < 0.05, 8.3 ± 0.4 and 6.0 ± 0.8 cells, respectively). On Day 6, a greater proportion of PB+ embryos developed to the blastocyst stage than did PB− embryos (P < 0.05, 34.6 ± 2.4% and 20.7 ± 2.8%, respectively). However, when the GV oocytes of the PB− group were not included in recalculations, there was no difference in blastocyst rates between M-I arrested and M-II oocytes (35.3 and 34.6%, respectively). The number of blastomere nuclei in embryos obtained from the PB+ group (52.0 ± 2.5) was greater than that from the PB− group (P < 0.05, 29.1 ± 2.8). The proportion of degenerated parts in the blastocysts, as determined by morphological appearance, was the same in the PB+ and PB− groups. Although the quality of PB+ embryos was enhanced as compared with that of the PB− group, the proportion of inner cell mass and trophectoderm cells in PB+ and PB− blastocysts did not differ (1:1.9 and 1:2.2, respectively). Chromosome analysis revealed that PB+ blastocysts had more diploidy (P < 0.05, 69.7%) than did PB− blastocysts (44.0%), whereas PB− blastocysts had more triploid cells (P < 0.05, 34.0%) than did PB+ oocytes (8.4%). These results indicate that pig oocytes arrested before the M-II stage (M-I oocytes) undergo cytoplasmic maturation during maturation culture and have the same ability to develop to blastocysts after IVF as M-II oocytes, but some of them resulted in degeneration or delayed development with poor embryo quality.  相似文献   

9.
Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.  相似文献   

10.
The objective was to produce porcine tetraploid parthenogenetic embryos using cytochalasin B, which inhibits polar body extrusion. Porcine cumulus-enclosed oocytes aspirated from antral follicles were cultured for 51 h, and treated with cytochalasin B from 35 h to 42 h after the start of culture. After maturation culture, 74.7% (2074/2775) of oocytes treated with cytochalasin B did not extrude a polar body (0PB oocytes). In contrast, 80.4% (1931/2403) of control oocytes extruded a polar body (1PB oocytes). The 0PB oocytes were electrically stimulated, treated with cytochalasin B again for 3 h, and then cultured without cytochalasin B. Six days after electrical stimulation, 49.8% (321/644) reached the blastocyst stage. The number of cells in these blastocysts derived from 0PB oocytes was significantly lower than that from 1PB oocytes (0PB: 24.9 ± 10.6; 1PB: 43.0 ± 17.1; mean ± SD). A porcine chromosome 1-specific sequence was detected in parthenogenetic 0PB embryos by fluorescence in situ hybridization (FISH) analysis. Typical pronucleus-stage samples derived from 0PB embryos had two pronuclei, each with two signals. In two-cell and blastocyst-stage embryos, four signals were detected in each nucleus derived from 0PB embryos. We inferred that 0PB oocytes, which had a tetraploid number of chromosomes, started to develop as tetraploid parthenotes after electrical stimulation, and that tetraploid status was stably maintained during early embryonic development, at least until the blastocyst stage.  相似文献   

11.
Interspecies somatic cell nuclear transfer (iSCNT) involves the transfer of a nucleus or cell from one species into the cytoplasm of an enucleated oocyte from another. Once activated, reconstructed oocytes can be cultured in vitro to blastocyst, the final stage of preimplantation development. However, they often arrest during the early stages of preimplantation development; fail to reprogramme the somatic nucleus; and eliminate the accompanying donor cell's mitochondrial DNA (mtDNA) in favour of the recipient oocyte's genetically more divergent population. This last point has consequences for the production of ATP by the electron transfer chain, which is encoded by nuclear and mtDNA. Using a murine-porcine interspecies model, we investigated the importance of nuclear-cytoplasmic compatibility on successful development. Initially, we transferred murine fetal fibroblasts into enucleated porcine oocytes, which resulted in extremely low blastocyst rates (0.48%); and failure to replicate nuclear DNA and express Oct-4, the key marker of reprogramming. Using allele specific-PCR, we detected peak levels of murine mtDNA at 0.14±0.055% of total mtDNA at the 2-cell embryo stage and then at ever-decreasing levels to the blastocyst stage (<0.001%). Furthermore, these embryos had an overall mtDNA profile similar to porcine embryos. We then depleted porcine oocytes of their mtDNA using 10 μM 2',3'-dideoxycytidine and transferred murine somatic cells along with murine embryonic stem cell extract, which expressed key pluripotent genes associated with reprogramming and contained mitochondria, into these oocytes. Blastocyst rates increased significantly (3.38%) compared to embryos generated from non-supplemented oocytes (P<0.01). They also had significantly more murine mtDNA at the 2-cell stage than the non-supplemented embryos, which was maintained throughout early preimplantation development. At later stages, these embryos possessed 49.99±2.97% murine mtDNA. They also exhibited an mtDNA profile similar to murine preimplantation embryos. Overall, these data demonstrate that the addition of species compatible mtDNA and reprogramming factors improves developmental outcomes for iSCNT embryos.  相似文献   

12.
13.
Telomere function is essential to maintaining the physical integrity of linear chromosomes and healthy human aging. The probability of forming proper telomere structures depends on the length of the telomeric DNA tract. We attempted to identify common genetic variants associated with log relative telomere length using genome-wide genotyping data on 3,554 individuals from the Nurses'' Health Study and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial that took part in the National Cancer Institute Cancer Genetic Markers of Susceptibility initiative for breast and prostate cancer. After genotyping 64 independent SNPs selected for replication in additional Nurses'' Health Study and Women''s Genome Health Study participants, we did not identify genome-wide significant loci; however, we replicated the inverse association of log relative telomere length with the minor allele variant [C] of rs16847897 at the TERC locus (per allele β = −0.03, P = 0.003) identified by a previous genome-wide association study. We did not find evidence for an association with variants at the OBFC1 locus or other loci reported to be associated with telomere length. With this sample size we had >80% power to detect β estimates as small as ±0.10 for SNPs with minor allele frequencies of ≥0.15 at genome-wide significance. However, power is greatly reduced for β estimates smaller than ±0.10, such as those for variants at the TERC locus. In general, common genetic variants associated with telomere length homeostasis have been difficult to detect. Potential biological and technical issues are discussed.  相似文献   

14.
Telomerase activity in bovine embryos during early development   总被引:11,自引:0,他引:11  
Xu J  Yang X 《Biology of reproduction》2000,63(4):1124-1128
The telomere is the end structure of the DNA molecule. Telomerase is the ribonuclear enzyme that helps the cell's telomere to elongate; otherwise, the telomere will shorten with each cell division through conventional DNA replication. In most mammalian species, telomerase activity is present in germ cells but not in somatic cells. Recent research shows that telomerase activity is also present in early embryos, but to our knowledge, the dynamics of this enzyme during early embryo development have not been studied. In the present work, we conducted telomerase activity assays on bovine embryos fertilized in vitro and harvested at different stages from zygote to blastocyst. A polymerase chain reaction-based assay (Telomeric Repeat Amplification Protocol) was used to detect the telomerase activity in these embryos. We demonstrated that the telomerase activity is present in the early embryos, but that its level varies with the different developmental stages. The activity was relatively low in mature oocytes. It increased after in vitro fertilization and then decreased gradually until the embryo reached the eight-cell stage. After the eight-cell stage, the telomerase activity increased again and reached its highest level in the blastocyst stage. This study provides insight regarding how telomerase activity and, possibly, the length of the telomere are reprogrammed during early embryo development.  相似文献   

15.
16.

Background

The decline in hepatitis B virus surface antigen (HBsAg) may be an early predictor of the viral efficacy of Hepatitis B virus (HBV) therapy. The HBsAg levels obtained by different immunoassays now need comparing and the relationships between levels of HBsAg and HBV DNA alongside HBsAg and genotype must be evaluated.

Methodology/Principal Findings

HBsAg levels were compared among 80 patients using the Abbott Architect assay, a commercial immunoassay approved for HBsAg detection and quantitation, and three other assays derived from immunoassays approved for HBsAg detection (manufactured by Diasorin, Bio-Rad and Roche). Good correlation was found between the Abbot vs. Diasorin, Bio-Rad and Roche assays with narrow 95% limits of agreement and small mean differences: −0.06 to 0.11, −0.09 log10 IU/mL; −0.57 to 0.64, −0.04 log10 IU/mL; −0.09 to 0.45, −0.27 log10 IU/mL, respectively. These agreements were not affected by genotypes A or D. HBsAg was weakly correlated with HBV DNA, whatever the HBsAg assay used: Abbott, ρ = 0.36 p = 0.001, Diasorin ρ = 0.34, p = 0.002; Bio-Rad ρ = 0.37, p<0.001; or Roche ρ = 0.41, p<0.001. This relationship between levels of HBsAg and HBV DNA seemed to depend on genotypes. Whereas HBsAg (Abbott assay) tended to correlate with HBV DNA for genotype A (ρ = 0.44, p = 0.02), no such correlation was significant for genotypes D (ρ = 0.29, p = 0.15).

Conclusion/Significance

The quantitation of HBsAg in routine clinical samples is comparable between the reference assay and the adapted assays with acceptable accuracy limits, low levels of variability and minimum discrepancy. While HBsAg quantitation is not affected by HBV genotype, the observed association between levels of HBsAg and HBV DNA seems genotype dependent.  相似文献   

17.

Background

Chronic psychological distress has been linked to shorter telomeres, an indication of accelerated aging. Yet, little is known about relations of anxiety to telomeres. We examined whether a typically chronic form of anxiety – phobic anxiety – is related to telomere length.

Methodology/Principal Findings

Relative telomere lengths (RTLs) in peripheral blood leukocytes were measured by quantitative real-time polymerase chain reaction among 5,243 women (aged 42–69 years) who: were participants in the Nurses'' Health Study; were controls in prior case-control studies of telomeres and disease, or randomly selected healthy participants in a cognitive function sub-study; had completed the Crown-Crisp phobic index proximal to blood collection. Adjusted least-squares mean RTLs (z-scores) were calculated across phobic categories. Higher phobic anxiety was generally associated with lower RTLs (age-adjusted p-trend = 0.09); this association was similar after adjustment for confounders – paternal age-at-birth, smoking, body mass index (BMI) and physical activity (p-trend = 0.15). Notably, a threshold was identified. Among women with Crown-Crisp<6 points, the multivariable-adjusted least-squares mean RTL z-score = 0.02 standard units; however, among the most phobic women (Crown-Crisp≥6), the multivariable-adjusted least-squares mean RTL z-score = −0.09 standard units (mean difference = −0.10 standard units; p = 0.02). The magnitude of this difference was comparable to that for women 6 years apart in age. Finally, effect modification by BMI, smoking and paternal age was observed: associations were stronger among highly phobic women with BMI≥25 kg/m2, without smoking history, or born to fathers aged ≥40 years.

Conclusions/Significance

In this large, cross-sectional study high phobic anxiety was associated with shorter telomeres. These results point toward prospective investigations relating anxiety to telomere length change.  相似文献   

18.
Studies of human cleavage stage embryos, 3 days after fertilization of the oocyte, have revealed remarkably high levels of chromosome abnormality. In addition to meiotic errors derived from the gametes, principally the oocyte, mitotic errors occurring after fertilization are also common, leading to widespread chromosomal mosaicism. The prevalence of chromosome anomalies in embryos may explain the relatively poor fertility and fecundity in humans and the low success rates of assisted reproductive treatments (e.g., IVF). While much is known concerning the incidence of aneuploidy during the first 3 days following fertilization, it is only in the last couple of years that large numbers of embryos at the final stage of preimplantation development, the blastocyst stage, 5 days after fertilization, have been subjected to detailed analysis. Here we discuss the latest data from the comprehensive cytogenetic analysis of blastocysts. These findings indicate that the majority of selection against chromosome abnormalities does not occur until the time of implantation or shortly after, with aneuploidy typically affecting more than 50% of blastocysts. Additionally, clinical results presented suggest that screening of blastocyst stage embryos for chromosome abnormality, with preferential transfer to the uterus of those found to be euploid, may help to improve the success rates of assisted reproductive treatments.  相似文献   

19.
Smoking is the leading cause of preventable death worldwide. Accordingly, effort has been devoted to determining the genetic variants that contribute to smoking risk. Genome-wide association studies have identified several variants in nicotinic acetylcholine receptor genes that contribute to nicotine dependence risk. We previously undertook pooled sequencing of the coding regions and flanking sequence of the CHRNA5, CHRNA3, CHRNB4, CHRNA6 and CHRNB3 genes and found that rare missense variants at conserved residues in CHRNB4 are associated with reduced risk of nicotine dependence among African Americans. We identified 10 low frequency (<5%) non-synonymous variants in CHRNB4 and investigated functional effects by co-expression with normal α3 or α4 subunits in human embryonic kidney cells. Voltage-clamp was used to obtain acetylcholine and nicotine concentration–response curves and qRT-PCR, western blots and cell-surface ELISAs were performed to assess expression levels. These results were used to functionally weight genetic variants in a gene-based association test. We find that there is a highly significant correlation between carrier status weighted by either acetylcholine EC50 (β = −0.67, r2 = 0.017, P = 2×10−4) or by response to low nicotine (β = −0.29, r2 = 0.02, P = 6×10−5) when variants are expressed with the α3 subunit. In contrast, there is no significant association when carrier status is unweighted (β = −0.04, r2 = 0.0009, P = 0.54). These results highlight the value of functional analysis of variants and the advantages to integrating such data into genetic studies. They also suggest that an increased sensitivity to low concentrations of nicotine is protective from the risk of developing nicotine dependence.  相似文献   

20.
Interspecies hybridization of bovids occurs between domestic cattle and at least three other species; American bison (Bison bison), yak (Bos grunniens) and banteng (Bos banteng). Birth of a cattle × buffalo (Bubalus bubalis) hybrid has reportedly occurred in Russia and in China, but these reports were not authenticated. Such hybrids could be important in improving livestock production and management of diseases that impede production in tropical Africa. This study investigated hybridization between cattle and its closest African wild bovid relative, the African buffalo (Syncerus caffer caffer). In an attempt to produce cattle × buffalo hybrid embryos in vitro, matured cattle oocytes were subjected to a standard in vitro fertilization (IVF) procedure with either homologous cattle (n = 1166 oocytes) or heterologous African buffalo (n = 1202 oocytes) frozen-thawed epididymal sperm. After IVF, 67.2% of the oocytes inseminated with the homologous cattle sperm cleaved. In contrast, fertilization with buffalo sperm resulted in only a 4.6% cleavage rate. The cleavage intervals were also slower in hybrid embryos than in the IVF-derived cattle embryos. Of the cleaved homologous cattle embryos 52.2% progressed to the morula stage compared with 12.7% for the buffalo hybrid embryos. No hybrid embryos developed beyond the early morula stage, while 40.1% of the cleaved cattle × cattle embryos developed to the blastocyst stage. Transfer of buffalo hybrid IVF embryos to domestic cattle surrogates resulted in no pregnancies at 60 days post-transfer. This study indicates that interspecies fertilization of cattle oocytes with African buffalo epididymal sperm can occur in vitro, and that a barrier to hybridization occurs in the early stages of embryonic development. Chromosomal disparity is likely the cause of the fertilization abnormalities, abnormal development and subsequent arrest impairing the formation of hybrid embryos beyond the early morula stage. Transfer of the buffalo hybrid embryos did not rescue the embryos from development arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号