首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为了探讨利用黄瓜花叶病毒(CMV)构建表达载体的可行性,分离了山东株(SD) CMV RNA 3的全长cDNA。测定其全序列后,采用定点突变的方法在衣壳蛋白(CP)基因起始密码子处改造出一个NsiⅠ位点,可将外源基因引入NsiⅠ位点和CP基因终止密码子上游附近的XhoⅠ或SalⅠ位点而置换掉CP基因。分别用绿色荧光蛋白(GFP)基因、β-葡糖醛酸酶(GUS)基因以及小鼠二氢叶酸还原酶(DHFR)基因3种报告基因置换CP基因。将Fny株CMV RNA 1、RNA 2和SDCMV嵌合RNA 3的cDNA分别插入pCass载体的35S启动子和终止子之间,将构建的置换型载体直接以质粒的方式转染烟草原生质体,表达了3种报告基因。  相似文献   

2.
在体外RNA和蛋白质合成及自复制系统的研究中,Qβ RNA复制酶作为以RNA为模板的RNA聚合酶,是比较重要的应用酶种之一。该酶由4个亚基组成,其中只有 β亚基是由病毒基因编码,而其他3个亚基都是宿主蛋白。利用普通表达载体合成Qβ复制酶时,得到的β亚基几乎都是不溶性蛋白,从而影响了Qβ复制酶的活性和产率。为尝试提高β亚基的溶解性,构建含有β亚基基因的表达质粒pBAD 33rep,同时利用pET21a(+)为表达载体表达其他3个亚基进行共表达研究。不同亚基组合的共表达结果通过SDSPAGE分析表明,当β亚基与EFTuTs亚基共表达时,溶解度有一定的提高,而且可溶性部分也具有复制酶活性。通过调节共表达诱导物浓度,相对增强可溶性β亚基的表达,可溶性Qβ复制酶酶量得到相应的提高。  相似文献   

3.
烟草MARs的分离及其功能分析   总被引:2,自引:0,他引:2  
从烟草基因组中克隆到两条新的MAR片段(M14和M17),序列分析表明,它们具有90%AT-box,A-box,T-box,碱基非配对区域,拓扑异构酶Ⅱ识别位点,弯曲DNA序列,复制起始序列和ATATTT等典型的MAR序列特征,并与原有MAR序列的特征不同。将它们分别构建到植物表达载体pCAMBIA2301 GUS基因(uidA)表达盒一侧及两侧,通过农杆菌介导转化烟草。组织化学染色法定性检测GUS活性表明,带有M14和M17的uidA基因在转基因烟草中稳定表达。GUS活性的定量检测表明,表达载体上uidA基因一端或两端连接有MAR的转化烟草中,GUS的表达水平与对照相比都有了明显提高,而uidA基因两侧连有MAR的载体提高表达水平的效果优于一端连有MAR的载体,可使GUS活性增强3.14倍,但不同转化个体之间表达水平的差异仍然明显。上述结果表明,所得DNA序列为两条新的MAR片段,并且具有提高转基因表达水平的功能。  相似文献   

4.
β-半乳糖苷酶(β-galactosidase, EC 3.2.1.23)由植物中广泛分布的一类糖基水解酶组成, 被认为与细胞壁多糖的代谢相关. 棉花(Gossypium hirsutum) β-半乳糖苷酶基因已被成功分离, 被命名为GhGal1. RNA杂交实验显示该基因在棉花纤维发育的伸长期优势表达. 为了分析GhGal1基因的时空表达调控, 本研究构建了GhGal1启动子区域(1770 bp)与β-葡糖醛酸糖苷酶(glucuronidase, GUS)基因融合的双元载体, 通过农杆菌转化烟草植株. 对转基因植株分析的结果表明: 此转基因果实中的GUS活性比阴性和阳性对照的活性高. GUS组织定位分析表明: β-半乳糖苷酶基因能在根组织的分生区、子叶、维管束组织、果实和表皮毛中表达. 此外, 调控区域的序列分析揭示该序列含有一些果实/种子特异表达以及与表皮毛表达相关的保守元件. 这些结果显示了GhGal1启动子在转基因烟草植株中的时空表达特征, 并提供了GhGal1基因参与棉花纤维发育的一些重要线索.  相似文献   

5.
Cre重组酶来自噬菌体P1,可以识别特异的loxP位点的DNA序列,并进行专一性的剪切和拼接。利用PCR技术将cre基因克隆至原核表达载体pET-29a,在大肠杆菌BL21(DE3)得到了高效表达。采用DEAE-52柱层析的方法对表达蛋白进行了纯化。体外生物学活性检测表明,表达蛋白对含有同向loxP位点的质粒有切割活性。   相似文献   

6.
根据已报道的寄生疫霉(Phytophthora parasitica)parA1基因的序列设计引物,从4株寄生疫霉中国菌株(3株来自烟草,1株来自刺槐)中克隆到此基因并进行了重组表达。序列分析表明4株寄生疫霉parA1基因序列高度保守。对表达载体pET30a(+)双酶切,构建表达Parasiticein蛋白的表达载体pETeli,用CaCl\-2法转化大肠杆菌(Escherichia coli)BL21,通过诱导在大肠杆菌中进行非融合表达,表达产物在烟草上引起过敏性反应。性质测定表明,表达产物有一定的耐热性,并对蛋白酶K敏感。  相似文献   

7.
烟草花叶病毒(TMV)和番茄花叶病毒(ToMV)是烟草花叶病毒属中关系最为密切的病毒, 但它们在含N基因烟草上产生的枯斑大小有明显的差异. 比较了TMV, ToMV及用ToMV运动蛋白基因(MP)精确置换TMV MP后获得的重组病毒T/OMP在不同寄主上的症状差异, 发现T/OMP在含N基因烟草上产生的枯斑大小与ToMV相似. 分析比较TMV, ToMV和T/OMP外壳蛋白和MP在植物体内的积累水平, 发现三者之间没有明显的差异, 而TMV和T/OMP在原生质体中的复制水平也没有差异. 比较TMV, ToMV和T/OMP接种后烟草体内防御相关酶(PAL, POD和PPO)的活性变化, 结果T/OMP和TMV所诱导酶的变化趋势基本一致, 而与ToMV有所差异, 因此认为MP基因功能的差异决定了TMV和ToMV在N基因烟草上枯斑的大小.  相似文献   

8.
绿色荧光蛋白(GFP)可直接进行活体观察,它的这个优点可被用于监测转基因植物中选择标记基因的消除。为此,构建了植物表达载体pGNG,将绿色荧光蛋白基因(gfp)和卡那霉素抗性基因表达盒(NosP-nptll-NosT)一起克隆在两个同向的lox位点间,在第一个lox位点上游置有CaMV 35S启动子以驱动GFP表达,第二个lox位点下游置有不含启动子的大肠杆菌β-葡萄糖醛酸酶(GUS)基因。首先在含卡那霉素(Kan)的培养基上筛选出转pGNG的烟草,借助绿色荧光可容易地检出表达GFP的转化体。然后用另一转化载体pCambia1300Cre二次转化表达GFP的转基因植物,利用另一选择标记基因潮霉素抗性基因(hpt)进行筛选,在获得的再生植株中,Cre重组酶的表达消除了转化体中两lox位点间的gfpnptll。实验结果表明可借助GFP荧光的消失,快速选出nptII被消除的二次转化体,同时GUS(作为目的蛋白) 在CaMV 35S启动子驱动下获得表达。最后利用后代的分离将hptcre除去。  相似文献   

9.
番茄花叶病毒弱毒疫苗K(ToMV-K)的复制酶基因和运动蛋白基因分别具有乳石和赭石突变的特征. 为了对这一致弱特征进行扩展研究, 用PCR介导的定点突变技术, 对烟草花叶病毒普通株中国分离物(TMV-Cv)复制酶基因和运动蛋白基因分别进行乳石突变(UGA)和赭石突变(UAA), 构建了复制酶单突变体——TMV-Cvrase, 运动蛋白单突变体——TMV-Cvmp和复制酶与运动蛋白双突变体——TMV-Cvrase-mp. 烟草侵染试验发现, TMV-Cvmp和TMV-Cvrase-mp能侵染枯斑(Xanthi NC)和系统(K326)寄主, 后者侵染普通烟K326仅出现少量轻微的花叶症状; 子代病毒的电子显微镜观察、重复接种试验及其核酸的RNA斑点杂交、RT-PCR扩增与测序结果表明, TMV-Cvmp和TMV-Cvrase-mp子代病毒与TMV-Cv的大小和形态基本一致, 具有完整和稳定的侵染、复制和繁殖能力, 且其基因组仍保持着突变, 而复制酶单突变体TMV-Cvrase不能侵染烟草. 以上结果表明, 复制酶与运动蛋白的乳石突变与赭石突变协同致弱TMV-Cv对烟草的侵染症状, 从而暗示ToMV-K基因组的这种突变模式也可以用于其他植物病毒的致弱研究.  相似文献   

10.
转双抗虫基因烟草的研究   总被引:22,自引:3,他引:19  
用改造的雪花莲凝集素基因GNAmm与合成的苏云金芽孢杆菌(Bt)毒蛋白cry1Ac基因构建了带有双价基因的植物表达载体,在该表达载体中这两个基因的转录分别受笋瓜PP2启动子(SPP2P)和CaMV 35S启动子的调控。通过根癌土壤杆菌介导转化法,获得了一批抗卡那霉素的转化再生烟草植株。PCR检测及基因组DNA Southern blot\,Slot blot杂交分析的结果表明Gna基因和Bt基因已整合到烟草总DNA中。用Bt毒蛋白抗血清进行Western blot分析,转基因植株均有Bt杀虫蛋白的不同程度的表达。对转化再生烟草的虫试结果表明,在所受试的19株烟草中60%的植株上的棉铃虫在5天内死亡率达到100%,而且存活幼虫的生长发育受到明显抑制;蚜虫抑制生长试验表明,多数转化再生植株具有较强的抗蚜活性,平均能够抑制桃蚜50%~60%的蚜口密度,有的高达80%以上。以上结果表明利用这两个改造过的抗虫基因可以获得既抗虫又耐蚜的转双抗虫转基因植物。  相似文献   

11.
A novel chitinase gene of tobacco was isolated and characterized by DNA sequence analysis of a genomic clone and a cDNA clone. Comparative sequence analysis of both clones showed an identity of 94%. The proteins encoded by these sequences do not correspond to any of the previously characterized plant chitinases of classes I–IV and are designated as class V chitinases. Comparison of the chitinase class V peptide sequence with sequences in the Swiss Protein databank revealed significant sequence similarity with bacterial exo-chitinases from Bacillus circulans, Serratia marcescens and Streptomyces plicatus. It was demonstrated that class V chitinase gene expression is induced after treatment of tobacco with different forms of stress, like TMV-infection, ethylene treatment, wounding or ultraviolet irradiation. Two related chitinase class V proteins of 41 and 43 kDa were purified from Samsun NN tobacco leaves inoculated with tobacco mosaic virus. The proteins were purified by Chelating Superose chromatography and gel filtration. In vitro assays demonstrated that class V chitinases have endo-chitinase activity and exhibit antifungal activity toward Trichoderma viride and Alternaria radicina. In addition, it was shown that class V chitinase acts synergistically with tobacco class I β-1,3-glucanase against Fusarium solani germlings.  相似文献   

12.
Extracts of various flower tissues of tobacco with 70% methanol inhibited tobacco seed germination differently. Among them, extracts of stigma and anther were very inhibitory. When the extracts were partitioned between ethyl acetate and water, the activity of the ethyl acetate layer was stronger than that of the water layer. Stigmas and anthers had more abscisic acid (ABA) than the other floral tissues, which matched the results of the germination tests well. Guided by a bioassay using the inhibitory effects on tobacco seed germination, MeABA, ABA, and ABA-γ-d-glucopyranoside were isolated and identified from stigmas. All of the MeABA isolated did not seem to be an artefact produced by esterification with the solvent, for MeABA was detected even when stigmas were extracted with other solvents than methanol. MeABA and ABA did not inhibit tobacco pollen germination and elongation in vitro.  相似文献   

13.
Heat-stress granules (HSG) are highly ordered, cytoplasmic chaperone complexes found in all heat-stressed plant cells. We have developed an experimental system involving expression of cytosolic class I and class II small heat-stress proteins (Hsps) of pea, Arabidopsis and tomato in tobacco protoplasts to study the structural prerequisites for the assembly of HSG or HSG-like complexes. Class I and class II small Hsps formed class-specific dodecamers of 210-280 kDa, which, upon heat stress, were incorporated into HSG complexes. Interestingly, class II dodecamers alone could form HSG-like complexes (auto-aggregation), whereas class I dodecamers could do so only in the presence of class II proteins (recruitment). By analysing C-terminal deletion forms of Hsp17 class II, we obtained evidence that the intact C-terminus is critical for the oligomerization state, for the heat-stress-induced auto-aggregation and for recruitment of class I proteins. The class-specific formation of dimers as a prerequisite for oligomerization was analysed by the yeast two-hybrid system. In the presence of the endogenous (tobacco) set of heat-stress-induced proteins, all heterologous class I and class II proteins were incorporated into HSG complexes, whose ultrastructure was different from that of complexes formed by class I and class II proteins alone. Although other, more distantly related, members of the Hsp20 family, i.e. the plastidic pea Hsp21, the Drosophila Hsp23 and the mouse Hsp25, were well expressed in tobacco protoplasts and formed homo-oligomers of 200-700 kDa, none of them could be recruited to HSG complexes.  相似文献   

14.
cDNAs encoding three proteins from barley ( Hordeum vulgare ), a class-II chitinase (CHI), a class-II β-1,3-glucanase (GLU) and a Type-I ribosome-inactivating protein (RIP) were expressed in tobacco plants under the control of the CaMV 35S-promoter. High-level expression of the transferred genes was detected in the transgenic plants by Northern and Western blot analysis. The leader peptides in CHI and GLU led to accumulation of these proteins in the intercellular space of tobacco leaves. RIP, which is naturally deposited in the cytosol of barley endosperm cells, was expressed either in its original cytosolic form or fused to a plant secretion peptide (spRIP). Fungal infection assays revealed that expression of the individual genes in each case resulted in an increased protection against the soilborne fungal pathogen Rhizoctonia solani , which infects a range of plant species including tobacco. To create a situation similar to 'multi-gene' tolerance, which traditional breeding experience has shown to provide crops with a longer-lasting protection, several of these antifungal genes were combined and protection against fungal attack resulting from their co-expression in planta was evaluated. Transgenic tobacco lines were generated with tandemly arranged genes coding for RIP and CHI as well as GLU and CHI. The performance of tobacco plants co-expressing the barley transgenes GLU/ CHI or CHI/RIP in a Rhizoctonia solani infection assay revealed significantly enhanced protection against fungal attack when compared with the protection levels obtained with corresponding isogenic lines expressing a single barley transgene to a similar level. The data indicate synergistic protective interaction of the co-expressed anti-fungal proteins in vivo .  相似文献   

15.
16.
Different isoforms of chitinases and [beta]-1,3-glucanases of tobacco (Nicotiana tabacum cv Samsun NN) were tested for their antifungal activities. The class I, vacuolar chitinase and [beta]-1,3-glucanase isoforms were the most active against Fusarium solani germlings, resulting in lysis of the hyphal tips and in growth inhibition. In additon, we observed that the class I chitinase and [beta]-1,3-glucanase acted synergistically. The class II isoforms of the two hydrolases exhibited no antifungal activity. However, the class II chitinases showed limited growth inhibitory activity in combination with higher amounts of class I [beta]-1,3-glucanase. The class II [beta]-1,3-glucanases showed no inhibitory activity in any combination. In transgenic tobacco plants producing modified forms of either a class I chitinase or a class I [beta]-1,3-glucanase, or both, these proteins were targeted extracellularly. Both modified proteins lack their C-terminal propeptide, which functions as a vacuolar targeting signal. Extracellular targeting had no effect on the specific activities of the chitinase and [beta]-1,3-glucanase enzymes. Furthermore, the extracellular washing fluid (EF) from leaves of transgenic plants expressing either of the secreted class I enzymes exhibited antifungal activity on F. solani germlings in vitro comparable to that of the purified vacuolar class I proteins. Mixing EF fractions from these plants revealed synergism in inhibitory activity against F. solani; the mixed fractions exhibited inhibitory activity similar to that of EF from plants expressing both secreted enzymes.  相似文献   

17.
18.
19.
Cox KD  Layne DR  Scorza R  Schnabel G 《Planta》2006,224(6):1373-1383
Diseases of agricultural crops are caused by pathogens from several higher-order phylogenetic lineages including fungi, straminipila, eubacteria, and metazoa. These pathogens are commonly managed with pesticides due to the lack of broad-spectrum host resistance. Gastrodia anti-fungal protein (GAFP; gastrodianin) may provide a level of broad-spectrum resistance due to its documented anti-fungal activity in vitro and structural similarity to insecticidal lectins. We transformed tobacco (Nicotiana tabacum cv. Wisconsin 38) with GAFP-1 and challenged transformants with agriculturally important plant pathogens from several higher-order lineages including Rhizoctonia solani (fungus), Phytophthora nicotianae (straminipile), Ralstonia solanacearum (eubacterium), and Meloidogyne incognita (metazoan). Quantitative real-time PCR and western blotting analysis indicated that GAFP-1 was transcribed and translated in transgenic lines. When challenged by R. solani and P. nicotianae, GAFP-1 expressing lines had reduced symptom development and improved plant vigor compared to non-transformed and empty vector control lines. These lines also exhibited reduced root galling when challenged by M. incognita. Against R. solanacearum expression of GAFP-1 neither conferred resistance, nor exacerbated disease development. These results indicate that heterologous expression of GAFP-1 can confer enhanced resistance to a diverse set of plant pathogens and may be a good candidate gene for the development of transgenic, root-disease-resistant crops.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号