首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although electroconvulsive therapy (ECT) has been used as a treatment for mental disorder since 1930s, little progress has been made towards understanding the mechanisms underlying its therapeutic and adverse effects. The aim of this work was to analyze the expression of NCS-1 (neuronal calcium sensor 1, a protein that was found to be altered in post-mortem prefrontal cortex of schizophrenic patients) in striatum, cortex, hippocampus and cerebellum of Wistar rats after acute or chronic electroconvulsive stimulation (ECS). Rats were submitted to a single stimulation (acute) or to a series of eight stimulations, applied one every 48 h (chronic). Animals were killed for collection of tissue samples at time zero, 30 min, 3, 12, 24 and 48 h after stimulation in the acute model and at the same time intervals after the last stimulation in the chronic model. Our results indicated that chronic ECS increased the expression of NCS-1 only in cerebellum. Such results on the expression of proteins involved in signaling pathways that are relevant for neuropsychiatric disorders and treatment, in particular ECT, can contribute to shed light on the mechanisms related to therapeutic and adverse effects.  相似文献   

2.
Abstract: The uptake and release of [3H]noradrenaline and [3H]-5-hydroxytryptamine (5-HT) were studied in cerebral cortex slices from rats 30 min and 24 h after a single electroconvulsive shock (ECS) and 24 h after a series of five shocks given over 10 days. Both the K m and V max for 5-HT uptake were lower than controls 24 h after a single ECS, whereas after 5 ECS spread over 10 days both parameters remained depressed, though only the fall in Vmax was significant. Noradrenaline uptake was not altered after a single ECS, but the Vmax and K m were elevated following chronic ECS treatment. Neither ECS treatment schedule had any effect on the potassium-stimulated release of either transmitter. It is possible that the changes in monoamine uptake seen following ECS are an adaptive response to alterations in the synaptic cleft concentration of these transmitters.  相似文献   

3.
Abstract: Hippocampal thyrotropin-releasing hormone (TRH) release was examined after seizures were induced by electroconvulsive shock (ECS). Rat hippocampal slices taken 12, 24, or 48 h after 3 days of alternate-day ECS treatment or sham-ECS treatment were stimulated with potassium with or without calcium in a superfusion system containing in-line charcoal adsorbent to concentrate TRH. Released TRH and tissue TRH were measured by radioimmunoassay. The TRH content of hippocampal slices was increased fivefold over sham-ECS levels 12, 24, and 48 h after ECS, but this was not associated with an increase in basal TRH release. Potassium-stimulated TRH release was significantly elevated over basal release 12, 24, and 48 h after ECS. Potassium-stimulated calcium-dependent TRH release increased linearly after ECS, reaching its highest level 48 h after seizure. Thus, although enhanced calcium-dependent TRH release was associated with elevated tissue levels, this relationship was not proportional in that tissue TRH was elevated to the same extent at all times after ECS, whereas potassium-evoked calcium-dependent TRH release increased gradually over time after seizure. These results suggest that postictal elevations in TRH are associated with an enhanced capacity for release that develops as a result of a time-dependent shift of TRH from a storage compartment to a readily releasable pool. The observed elevation in stimulated TRH release may be relevant to seizure-induced modulation of TRH receptors in vivo.  相似文献   

4.
It is well described that impairment of energy production has been implicated in the pathogenesis of a number of diseases. Although several advances have occurred over the past 20 years concerning the use and administration of electroconvulsive therapy (ECT) to minimize its side effects, little progress has been made in understanding its mechanism of action. In this work, our aim was to measure the activities of mitochondrial respiratory chain complexes II and IV and succinate dehydrogenase from rat brain after acute and chronic electroconvulsive shock (ECS). Our results showed that mitochondrial respiratory chain enzymes activities were increased after acute ECS in hippocampus, striatum and cortex of rats. Besides, we also demonstrated that complex II activity was increased after chronic ECS in cortex, while hippocampus and striatum were not affected. Succinate dehydrogenase, however, was inhibited after chronic ECS in striatum, activated in cortex and not affected in hippocampus. Finally, complex IV was not affected by chronic ECS in hippocampus, striatum and cortex. Our findings demonstrated that brain metabolism is altered by ECS.  相似文献   

5.
Effects of GABAergic agents and that of electroconvulsive shock (ECS) treatment were studied on bicuculline and picrotoxin (PTX)-induced convulsions in mice. Neither acute nor chronic ECS had any significant effect on bicuculline-induced convulsions, whereas the latency for PTX-induced convulsions was delayed by both acute and chronic ECS. Baclofen treatment delayed significantly the latency for PTX-induced convulsions in animals which were subjected to both acute and chronic ECS, whereas in bicuculline-induced convulsions, it shortened the latency of convulsions 24 hr after acute ECS. Progabide delayed the bicuculline-induced convulsions except in the case of 24 hr after acute ECS and PTX-induced convulsions except in the case of animals treated chronically with ECS. Fengabine showed no significant effect on bicuculline-induced convulsions. However, on PTX-induced convulsions, the latency was delayed in animals not subjected to ECS and in those subjected to chronic ECS. The possible explanations for the alterations in the effect of GABAergic agents following electro and chemo convulsions are (i) differences in the nature of antagonism by bicuculline and PTX, (ii) alterations in receptor sensitivity or number, and (iii) alterations in the levels of endogenous neurotransmitters, the latter two resulting as a result of acute or chronic ECS.  相似文献   

6.
G protein-coupled receptor (GPCR) signaling cascades may be key substrates for the antidepressant effects of chronic electroconvulsive seizures (ECS). To better understand changes in these signaling pathways, alterations in levels of mRNA's encoding regulators of G protein signaling (RGS) protein subtypes-2, -4, -7, -8 and -10 were evaluated in rat brain using northern blotting and in situ hybridization. In prefrontal cortex, RGS2 mRNA levels were increased several-fold 2 h following an acute ECS. Increases in RGS8 mRNA were of lesser magnitude (30%), and no changes were evident for the other RGS subtypes. At 24 h following a chronic ECS regimen, RGS4, -7, and -10 mRNA levels were reduced by 20-30%; only RGS10 was significantly reduced 24 h after acute ECS. Levels of RGS2 mRNA were unchanged 24 h following either acute or chronic ECS. In hippocampus, RGS2 mRNA levels were markedly increased 2 h following acute ECS. More modest increases were seen for RGS4 mRNA expression, whereas levels of the other RGS subtypes were unaltered. At 24 h following chronic ECS, RGS7, -8 and -10 mRNA levels were decreased in the granule cell layer, and RGS7 and -8 mRNA levels were decreased in the pyramidal cell layers. Only RGS8 and -10 mRNA levels were significantly reduced in hippocampus 24 h following an acute ECS. Paralleling neocortex, RGS2 mRNA content was unchanged in hippocampus 24 h following either acute or chronic ECS. In ventromedial hypothalamus, RGS4 mRNA content was increased 24 h following chronic ECS, whereas RGS7 mRNA levels were only increased 24 h following an acute ECS. The increased RGS4 mRNA levels in hypothalamus were significant by 2 h following an acute ECS. These studies demonstrate subtype-, time-, and region-specific regulation of RGS proteins by ECS, adaptations that may contribute to the antidepressant effects of this treatment.  相似文献   

7.
This work was performed in order to determine the level of oxidative damage and antioxidant enzymes activities late after acute and chronic electroconvulsive shock (ECS) in rats. We measured oxidative parameters in hippocampus, cortex, and striatum, at 45, 60, 90 and 120 days after a single or multiple ECS. We demonstrated an increase in lipid peroxidation after multiple ECS in the hippocampus and striatum. This was also the case for protein carbonyls in the single or multiple protocols. In this way, we demonstrated an increase in catalase in cortex in contrast to striatum and hippocampus, were there were decreases sometimes in chronic ECS. The superoxide dismutase activities decrease in different times after single and multiple ECS in the hippocampus. Our findings demonstrated that there is a delayed increase after ECS in oxidative damage and decrease in antioxidant enzymes activities in hippocampus and striatum.  相似文献   

8.
Abstract Electroconvulsive shock (ECS) administered once daily for up to 14 days decreases β-adrenergic receptor binding in the cortex and hippocampus in a time-dependent manner. The decrease in binding in the cortex lasts at least 1 week after the last shock. In the striatum, hypothalamus, or cerebellum, 14 days of ECS did not produce significant changes in β-adrenergic receptor binding. The brain regional pattern of β-adrenergic receptor changes suggests that repeated ECS affects β-adrenergic receptors in brain regions that receive a noradrenergic innervation activated by ECS. The effects of ECS on neurotransmitter receptor binding appear to be highly selective. Of five receptors in the cortex and three receptors in the hippocampus measured, only β-adrenergic receptor binding is decreased. Chronic footshock stress does not alter β-adrenergic receptor binding sites in the cortex, indicating that the effects of ECS are not due to stress alone. The effects of ECS on reserpine-induced alterations in β-adrenergic receptor binding sites were also examined. Ten days of ECS following chronic reserpine injections reverses the increased binding of β-adrenergic receptors  相似文献   

9.
Asymmetry of Diacylglycerol Metabolism in Rat Cerebral Hemispheres   总被引:1,自引:1,他引:0  
Diacylglycerols (DGs) were found to be asymmetrically distributed between the two cerebral hemispheres of rat brain. The left cerebral hemisphere (LCH) contained 100% more DG than the right cerebral hemisphere (RCH). The lateralization was enhanced in animals subjected to depolarization induced by a single electroconvulsive shock (ECS). During the acute phase of the convulsion, the DG pool increased in both hemispheres, with the LCH attaining a concentration 180% higher than the RCH. Stearate and arachidonate were the principal DG-acyl groups accumulated in the RCH, whereas in the LCH stearate and palmitate were mainly involved. After the last of a series of five shocks (one per day) the lateralization of the "DG response" was less accentuated during the acute phase of the ECS. Whereas DG release was drastically reduced in the LCH, in the RCH it was minimally affected. The DG sidedness after five shocks was nevertheless maintained at the level of arachidonate-containing DGs, which showed a higher accumulation in the LCH than in the RCH. The kinetics of DG removal showed a rapid phase during the first minute following a single or five ECSs. Total DG levels returned to basal values in the RCH, whereas in the LCH they remained slightly increased with respect to the initial levels 1 min after the convulsive episode. Minimal changes occurred in the subsequent 4 min. Chronic ECS altered the endogenous DG content and composition. Thus, 24 h after the last of four ECSs, total levels of DGs diminished by 40% in the RCH, whereas they remained unchanged in the LCH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Although several advances have occurred over the past 20 years concerning refining the use and administration of electroconvulsive therapy to minimize side effects of this treatment, little progress has been made in understanding the mechanisms underlying its therapeutic or adverse effects. This work was performed in order to determine the level of oxidative damage at different times after the maintenance electroconvulsive shock (ECS). Male Wistar rats (250–300 g) received a protocol mimicking therapeutic of maintenance or simulated ECS (Sham) and were subsequently sacrificed immediately after, 48 h and 7 days after the last maintenance electroconvulsive shock. We measured oxidative damage parameters (thiobarbituric acid reactive species for lipid peroxidation and protein carbonyls for protein damage, respectively) in hippocampus, cortex, cerebellum and striatum. We demonstrated no alteration in the lipid peroxidation and protein damage in the four structures studied immediately after, 48 h and 7 days after a last maintenance electroconvulsive shock. Our findings, for the first time, demonstrated that after ECS maintenance we did protocol minimal oxidative damage in the brain regions, predominating absence of damage on the findings.  相似文献   

11.
The effects of a single and repeated electroconvulsive shock (ECS) (300 mA, 0.2 s) on tetrahydrobiopterin (BH4) levels and GTP-cyclohydrolase activity in the brain and adrenal glands of rats were examined. Twenty-four hours after the last ECS treatment (one/day for 7 days), biopterin levels were significantly elevated in the locus coeruleus, hippocampus, frontal cortex, hypothalamus, ventral tegmental area, and adrenal gland. There were no changes in biopterin levels after a single application of ECS. GTP-cyclohydrolase activity was significantly increased in the locus coeruleus, frontal cortex, hippocampus, hypothalamus, and adrenal gland 24 h after repeated ECS and remained elevated in certain tissues up to 8 days after the last treatment. Kinetic analysis of adrenal and locus coeruleus GTP-cyclohydrolase 1 day after 7 days of ECS showed significant changes in both Km and Vmax values. These data suggest that the long-term increases in BH4 levels and GTP-cyclohydrolase activity after repeated ECS may play a part in the mediation of the antidepressant effects of ECS.  相似文献   

12.
Epilepsy prevalence is high in infancy and in the elderly population. Lithium–pilocarpine is widely used to induce experimental animal models of epilepsy, leading to similar neurochemical and morphological alterations to those observed in temporal lobe epilepsy. As astrocytes have been implicated in epileptic disorders, we hypothesized that specific astroglial changes accompany and contribute to epileptogenesis. Herein, we evaluated time-dependent astroglial alterations in the hippocampus of young (27-day-old) rats at 1, 14 and 56 days after Li–pilocarpine-induced status epilepticus (SE), corresponding to different phases in this model of epilepsy. We determined specific markers of astroglial activation: GFAP, S100B, glutamine synthetase (GS), glutathione (GSH) content, aquaporin-4 (AQP-4) and potassium channel Kir 4.1; as well as epileptic behavioral, inflammatory and neurodegenerative changes. Phase-dependent signs of hippocampal astrogliosis were observed, as demonstrated by increments in GFAP, S100B and GS. Astrocyte dysfunction in the hippocampus was characterized, based on the decrease in GSH content, AQP-4 and Kir 4.1 channels. Degenerating neurons were identified by Fluoro-Jade C staining. We found a clear, early (at SE1) and persistent (at SE56) increase in cerebrospinal fluid (CSF) S100B levels. Additionally, serum S100B was found to decrease soon after SE induction, implicating a rapid-onset increase in the CSF/serum S100B ratio. However, serum S100B increased at SE14, possibly reflecting astroglial activation and/or long-term increase in cerebrovascular permeability. Moreover, we suggest that peripheral S100B levels may represent a useful marker for SE in young rats and for follow up during the chronic phases of this model of epilepsy. Together, results reinforce and extend the idea of astroglial involvement in epileptic disorders.  相似文献   

13.
Chronic electroconvulsive shock (ECS) is known to increase the level of serotonin-2 (S2) receptors in male rat brain. Using quantitative autoradiography, we have studied the distribution pattern of these receptors in female as well as male rats and the effect of repeated ECS on the receptor level in both sexes. We find that although the distribution of S2 receptors is generally similar in males and females, they respond differently to repeated ECS. In males we found the expected increase in S2 binding, which was localized to specific cortical, hippocampal, and septal regions. In females, no increase was found in the cortex or septum and relatively small increases were found in the hippocampus. It appears that the regulation of S2 receptors by ECS is sex-dependent.  相似文献   

14.
The effect of a single electroconvulsive shock (ECS) (30 min and 24 h after treatment) and repeated ECS (10 once-daily) on the adenosine neuromodulatory system was investigated in rat cerebral cortex, cerebellum, hippocampus, and striatum. The present study examined the adenosine A1 receptor using N6-[3H]cyclohexyladenosine ([3H]CHA), the A2 receptor using 5'-N-[3H]ethylcarboxyamidoadenosine ([ 3H]NECA), adenylate cyclase using [3H]forskolin, and the adenosine uptake site using [3H]nitrobenzylthioinosine ([3H]NBI). At 30 min after a single ECS, the Bmax of the [3H]NBI binding in striatum was increased by 20%, which is in good agreement with the well-known postictal adenosine release. The Bmax of [3H]forskolin binding in striatum and cerebellum was increased by 60 and 20%, respectively. In contrast to earlier reported changes following chemically induced seizures, [3H]CHA binding was not altered postictally. At 24 h after a single ECS, there were no changes for any ligand in any brain region. Following repeated ECS, there was a 20% increase of [3H]CHA binding sites in cerebral cortex, which lasted for at least 14 days after the last ECS. [3H]Forskolin binding in hippocampus and striatum was 20% lowered 24 h after 10 once-daily ECS but had already returned to control levels 48 h after the last treatment. Evidence is provided that the upregulated adenosine A1 receptors are coupled to guanine nucleotide binding proteins and, furthermore, that this upregulation is not paralleled by an increase in adenylate cyclase activity as labeled by [3H]forskolin.  相似文献   

15.
Abstract: We investigated the expression of inositol 1,4,5-trisphosphate (InsP3) 3-kinase mRNA after a single electroconvulsive shock (ECS) with in situ hybridization histochemistry in rat brain. At 6 h after ECS, the expression was markedly decreased in the dentate gyrus, and the decrease was maintained until 9 h with a slight recovery. The InsP3 3-kinase mRNA content returned to basal levels after 12 h. We could not detect any apparent changes in the expression of InsP3 3-kinase mRNA in the CA1–CA3 areas of hippocampus, the striatum, and the cerebral cortex at any time point examined. In the temporal pattern, the reduction of the expression in the dentate gyrus was preceded by the induction of c- fos after ECS. These observations suggest that the InsP3 3-kinase might be one of the genes whose expression can be altered by ECS.  相似文献   

16.
Acute seizures and other stimuli that increase neuronal activity cause a rapid induction of the immediate-early genes c-fos and c-jun, also referred to as nuclear proto-oncogenes, in the nervous system. In the present study, rats were administered one or more electroconvulsive seizures (ECS) and the responsiveness of c-fos and c-jun to an acute, "test" seizure was examined. Four hours after a single ECS, the induction of c-fos mRNA by a test seizure was blocked, in agreement with earlier findings, but by 18 h the levels of c-fos mRNA could be reinduced by the test seizure, suggesting that 1 day is sufficient to "reset" the responsiveness of this system. However, it was found that chronic, daily ECS treatments resulted in a time-dependent decrease in the expression of c-fos mRNA in response to a test seizure administered 18 h after the last daily ECS; this effect was maximal after 8-10 days of treatment, at which time the induction of c-fos mRNA by the test seizure was blocked dramatically. Chronic ECS also blocked the induction of c-jun in response to an acute, test seizure. The effect of chronic ECS on levels of Fos protein was also investigated. It was found that basal levels of Fos protein were reduced after chronic (10 days) ECS and were not induced by a test seizure. Because levels of Fos protein remain elevated 4 h after a single seizure this finding suggests that the mechanisms by which acute (4 h) and chronic (8-10 days) ECS block the induction of c-fos may differ.  相似文献   

17.
A significant increase of guanylylimidodiphosphate (GppNHp)-, fluoride-, and forskolin-stimulated adenylyl cyclase was observed in synaptic membrane preparations from rat cerebral cortex subsequent to chronic electroconvulsive shock (ECS) treatment. This effect required at least five treatments over a course of 10 days. The inhibition of adenylyl cyclase induced by GppNHp was not affected by these treatments. The dissociation constant (KD) and maximal binding for the photoaffinity GTP analog, [32P]P3-(4-azidoanilido)-P1-5'-GTP [( 32P]AAGTP), to each of the synaptic membrane G proteins also were unchanged after ECS treatment. Nonetheless, the transfer of [32P]AAGTP from Gi to Gs, which we suggest is indicative of the coupling between Gs and the adenylyl cyclase catalytic moiety, was accelerated by chronic ECS treatment but not by acute or sham treatment. Furthermore, chemical uncoupling of Gs from adenylyl cyclase rendered membranes from treated animals indistinguishable from controls. Finally, in all cases tested, membranes prepared from animals subjected to chronic treatment with amitriptyline or iprindole showed similar changes in the Gs-mediated activation of adenylyl cyclase. Acute treatments produced effects similar to controls, and liver and kidney membranes from animals receiving chronic treatment showed no changes in adenylyl cyclase despite the marked changes seen in brain. These results suggest that chronic administration of ECS enhances coupling between Gs and adenylyl cyclase enzyme and modifies interactions between Gs and Gi.  相似文献   

18.
Neuron-specific enolase (NSE) levels were measured by sandwich enzymo-immunoassay as well as by enzymatic assay in rat cerebrospinal fluid (CSF), following mechanical lesions of the brain tissue. Significant increases of NSE were observed in CSF, with a peak 2 h following lesions located near the lateral ventricle. Values returned to normal around 48 h later. In another experimental group, lesions were realized further away from the lateral ventricle; the elevation of NSE in CSF reached the maximal value 11 h later. In addition, measurements which were performed following lesions at the same location but of various sizes, indicated that the quantity of NSE released is proportional to the extent of brain damage. The possible factors which govern the time course and amount of NSE release in CSF are discussed. These results suggest that NSE could be a useful and easily detected marker of neuronal damage.  相似文献   

19.
1. Emerging evidence indicates that brain-derived neurotrophic factor (BDNF) and its receptor TrkB play important roles in the mechanism of action of electroconvulsive shock (ECS) treatment. ECS produces a significant increase in brain BDNF synthesis together with a variety of neuroplastic changes including neurogenesis and axonal sprouting in the rodent brain, which is believed to be associated to the antidepressant effect of ECS. ERK1/2 (extracellular signal-regulated kinase-1/2) and Akt (protein kinase B), both intracellular signaling molecules being linked to neurotrophin signaling and synthesis, are important pathways triggered by TrkB autophosphorylation. 2. We have previously observed that chemical antidepressants induce a rapid activation of TrkB signaling in the rodent prefrontal cortex (PFC), which is likely a consequence of the stimulatory effect of antidepressants on BDNF synthesis. However, it is not known whether ECS triggers TrkB autophosphorylation and if any ECS-induced effect on TrkB function may be associated with the activation of the ERK1/2 and Akt pathways. 3. The present study assayed the phosphorylation levels of TrkB, ERK1/2, and Akt in the PFC of sham and ECS-treated rats. While the TrkB autophosphorylation (pTrkB) levels were decreased 30 min after both acute and chronic ECS, no change in pTrkB levels were observed at any other time points measured. In contrast, acute but not chronic ECS, transiently induced a very rapid and robust hyperphosphorylation of ERK1/2. Akt phosphorylation levels remained unchanged following acute or chronic ECS. Hence, although ECS effectively stimulates the ERK1/2 pathway in the PFC, this effect does not appear to involve upstream activation of TrkB.  相似文献   

20.
Diabetic patients and streptozotocin (STZ)-induced diabetes mellitus (DM) models exhibit signals of brain dysfunction, evidenced by neuronal damage and memory impairment. Astrocytes surrounding capillaries and synapses modulate many brain activities that are connected to neuronal function, such as nutrient flux and glutamatergic neurotransmission. As such, cognitive changes observed in diabetic patients and experimental models could be related to astroglial alterations. Herein, we investigate specific astrocyte changes in the rat hippocampus in a model of DM induced by STZ, particularly looking at glial fibrillary acidic protein (GFAP), S100B protein and glutamate uptake, as well as the content of advanced glycated end products (AGEs) in serum and cerebrospinal fluid (CSF), as a consequence of elevated hyperglycemia and the content of receptor for AGEs in the hippocampus. We found clear peripheral alterations, including hyperglycemia, low levels of proinsulin C-peptide, elevated levels of AGEs in serum and CSF, as well as an increase in RAGE in hippocampal tissue. We found specific astroglial abnormalities in this brain region, such as reduced S100B content, reduced glutamate uptake and increased S100B secretion, which were not accompanied by changes in GFAP. We also observed an increase in the glucose transporter, GLUT-1. All these changes may result from RAGE-induced inflammation; these astroglial alterations together with the reduced content of GluN1, a subunit of the NMDA receptor, in the hippocampus may be associated with the impairment of glutamatergic communication in diabetic rats. These findings contribute to understanding the cognitive deficits in diabetic patients and experimental models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号