首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut colonization patterns change the composition of the resident microbiota and future immune system reactivity. Germ-free (GF) mice were either inoculated by single oral gavage of caecal content or let colonized by co-housing with specific pathogen-free (SPF) mice at different time points in the postnatal period. The microbiota composition was analyzed by denaturing gradient gel electrophoresis for 16S rRNA gene followed by principal component analysis. Furthermore, immune functions and cytokine concentrations were analyzed using flow cytometry, ELISA or multiplex bead assay. We found that a single oral inoculation of GF mice at three weeks of age permanently changed the gut microbiota composition, which was not possible to achieve at one week of age. Interestingly, the ex-GF mice inoculated at three weeks of age were also the only mice with an increased pro-inflammatory immune response. In contrast, the composition of the gut microbiota of ex-GF mice that were co-housed with SPF mice at different time points was similar to the gut microbiota in the barrier maintained SPF mice. The existence of a short GF postnatal period permanently changed levels of systemic regulatory T cells, NK and NKT cells, and cytokine production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system.  相似文献   

2.
Effect of gut microbiota on host whole metabolome   总被引:1,自引:0,他引:1  

Introduction

Recent advances in microbiome research have revealed the diverse participation of gut microbiota in a number of diseases. Bacteria-specific endogenous small molecules are produced in the gut, are transported throughout the whole body by circulation, and play key roles in disease establishment. However, the factors and mechanisms underlying these microbial influences largely remain unknown.

Objectives

The purpose of this study was to use metabolomics to better understand the influence of microbiota on host physiology.

Methods

Germ-free mice (GF) were orally administered with the feces of specific pathogen-free (SPF) mice and were maintained in a vinyl isolator for 4 weeks for establishing the so-called ExGF mice. Comparative metabolomics was performed on luminal contents, feces, urine, plasma, and tissues of GF and ExGF mice.

Results

The metabolomics profile of 1716 compounds showed marked difference between GF and ExGF for each matrix. Intestinal differences clearly showed the contribution of microbiota to host digestive activities. In addition, colonic metabolomics revealed the efficient conversion of primary to secondary metabolites by microbiota. Furthermore, metabolomics of tissues and excrements demonstrated the effect of microbiota on the accumulation of metabolites in tissues and during excretion. These effects included known bacterial effects (such as bile acids and amino acids) as well as novel ones, including a drastic decrease of sphingolipids in the host.

Conclusion

The diverse effects of microbiota on different sites of the host metabolome were revealed and novel influences on host physiology were demonstrated. These findings should contribute to a deeper understanding of the influence of gut microbiota on disease states and aid in the development of effective intervention strategies.
  相似文献   

3.
To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ‐free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well‐defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co‐metabolic products such as hippurate (urine) and 5‐aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo‐inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health‐care investigations.  相似文献   

4.
The gut microbiome functions like an endocrine organ, generating bioactive metabolites, enzymes or small molecules that can impact host physiology. Gut dysbacteriosis is associated with many intestinal diseases including (but not limited to) inflammatory bowel disease, primary sclerosing cholangitis-IBD, irritable bowel syndrome, chronic constipation, osmotic diarrhoea and colorectal cancer. The potential pathogenic mechanism of gut dysbacteriosis associated with intestinal diseases includes the alteration of composition of gut microbiota as well as the gut microbiota–derived signalling molecules. The many correlations between the latter and the susceptibility for intestinal diseases has placed a spotlight on the gut microbiome as a potential novel target for therapeutics. Currently, faecal microbial transplantation, dietary interventions, use of probiotics, prebiotics and drugs are the major therapeutic tools utilized to impact dysbacteriosis and associated intestinal diseases. In this review, we systematically summarized the role of intestinal microbiome in the occurrence and development of intestinal diseases. The potential mechanism of the complex interplay between gut dysbacteriosis and intestinal diseases, and the treatment methods are also highlighted.  相似文献   

5.
The existence of the ocular microbiota has been reported but functional analyses to evaluate its significance in regulating ocular immunity are currently lacking. We compared the relative contribution of eye and gut commensals in regulating the ocular susceptibility to Pseudomonas aeruginosa–induced keratitis. We find that in health, the presence of microbiota strengthened the ocular innate immune barrier by significantly increasing the concentrations of immune effectors in the tear film, including secretory IgA and complement proteins. Consistent with this view, Swiss Webster (SW) mice that are typically resistant to P. aeruginosa–induced keratitis become susceptible due to the lack of microbiota. This was exemplified by increased corneal bacterial burden and elevated pathology of the germ free (GF) mice when compared to the conventionally maintained SW mice. The protective immunity was found to be dependent on both eye and gut microbiota with the eye microbiota having a moderate, but significant impact on the resistance to infection. These events were IL-1ß–dependent as corneal IL-1ß levels were decreased in the infected GF and antibiotic-treated mice when compared to the SPF controls, and neutralization of IL-1ß increased the ocular bacterial burden in the SPF mice. Monocolonizing GF mice with Coagulase Negative Staphylococcus sp. isolated from the conjunctival swabs was sufficient to restore resistance to infection. Cumulatively, these data underline a previously unappreciated role for microbiota in regulating susceptibility to ocular keratitis. We predict that these results will have significant implications for contact lens wearers, where alterations in the ocular commensal communities may render the ocular surface vulnerable to infections.  相似文献   

6.
Maternal transmission and cage effects are powerful confounding factors in microbiome studies. To assess the consequences of cage microenvironment on the mouse gut microbiome, two groups of germ-free (GF) wild-type (WT) mice, one gavaged with a microbiota harvested from adult WT mice and another allowed to acquire the microbiome from the cage microenvironment, were monitored using Illumina 16S rRNA sequencing over a period of 8 weeks. Our results revealed that cage effects in WT mice moved from GF to specific pathogen free (SPF) conditions take several weeks to develop and are not eliminated by the initial gavage treatment. Initial gavage influenced, but did not eliminate a successional pattern in which Proteobacteria became less abundant over time. An analysis in which 16S rRNA sequences are mapped to the closest sequenced whole genome suggests that the functional potential of microbial genomes changes significantly over time shifting from an emphasis on pathogenesis and motility early in community assembly to metabolic processes at later time points. Functionally, mice allowed to naturally acquire a microbial community from their cage, but not mice gavaged with a common biome, exhibit a cage effect in Dextran Sulfate Sodium-induced inflammation. Our results argue that while there are long-term effects of the founding community, these effects are mitigated by cage microenvironment and successional community assembly over time, which must both be explicitly considered in the interpretation of microbiome mouse experiments.  相似文献   

7.

Background

The liver is the central organ for xenobiotic metabolism (XM) and is regulated by nuclear receptors such as CAR and PXR, which control the metabolism of drugs. Here we report that gut microbiota influences liver gene expression and alters xenobiotic metabolism in animals exposed to barbiturates.

Principal findings

By comparing hepatic gene expression on microarrays from germfree (GF) and conventionally-raised mice (SPF), we identified a cluster of 112 differentially expressed target genes predominantly connected to xenobiotic metabolism and pathways inhibiting RXR function. These findings were functionally validated by exposing GF and SPF mice to pentobarbital which confirmed that xenobiotic metabolism in GF mice is significantly more efficient (shorter time of anesthesia) when compared to the SPF group.

Conclusion

Our data demonstrate that gut microbiota modulates hepatic gene expression and function by altering its xenobiotic response to drugs without direct contact with the liver.  相似文献   

8.
We investigated the hypothesis that the endocannabinoidome (eCBome), an extension of the endocannabinoid (eCB) signaling system with important functions in the CNS, may play a role in the microbiota-gut-brain axis. Using LC-MS/MS and qPCR arrays we profiled the brain eCBome of juvenile (4 weeks) and adult (13 weeks) male and female germ-free (GF) mice, which are raised in sterile conditions and virtually devoid of microbiota, present neurophysiological deficits, and were found recently to exhibit a strongly altered gut eCBome in comparison to conventionally raised age/sex-matched controls. The causal effect of the gut microbiome on the eCBome was investigated through the re-introduction into adult male GF mice of a functional gut microbiota by fecal microbiota transfer (FMT). The concentrations of the eCB, 2-arachidonoylglycerol (2-AG), and its 2-monoacylglycerol congeners, were significantly reduced in the brain, but not in the hypothalamus, of both juvenile and adult male and adult female GF mice. FMT rendered these decreases non-statistically significant. The eCB, anandamide (AEA), and its congener N-acylethanolamines (NAEs), were instead increased in the brain of adult female GF mice. Saturated fatty acid-containing NAEs were decreased in adult male GF mouse hypothalamus in a manner not reversed by FMT. Only few changes were observed in the expression of eCBome enzymes and receptors. Our data open the possibility that altered eCBome signaling may underlie some of the brain dysfunctions typical of GF mice.  相似文献   

9.
The potent role of indigenous microbiota in maintaining murine CMV (MCMV)-specific memory T cells, which were measured by multimer staining, was investigated using germfree (GF) mice. When the BALB/c mice bred under specific pathogen-free (SPF) conditions were i.p. infected with 0.2 LD(50) of MCMV, high frequencies of CD69(+)/CD44(+) MCMV-specific CD8 T cells were noted in the lungs even at 6-12 mo after infection (11.1 +/- 3.2 and 9.8 +/- 0.9%, respectively). In contrast, even though the viral load and expression levels of mRNA of such cytokines as IL-2, IL-7, IL-15, and IFN-gamma in the lungs of MCMV-infected GF mice were comparable to those of infected SPF mice, the frequencies of MCMV-specific CD8 T cells in the lungs of infected GF mice were kept lower than 1% at 6-12 mo after infection. In addition, the reconstitution of microbiota of MCMV-infected GF mice by orally administering a fecal suspension prepared from SPF mice restored the frequencies of both CD8(+)/multimer(+) and CD8(+)/multimer(-) T cells to levels similar to those found in SPF mice. These results suggested the indigenous microbiota to play a crucial role in the expansion and maintenance of viral-specific CD8 memory T cells, probably by cross-reactivity between the antigenic epitope of the MCMV-specific memory T cells and the variety of peptides derived from the members of the microbiota. Such cross-reactivity may thus be a major feature of those cells.  相似文献   

10.
Separating the large intestine from gut flora is a robust layer of epithelial cells. This barrier is armed with an array of recognizing receptors that collectively set the host innate response. Here, we use nuclear receptors (NRs) and Toll-like receptors (TLRs), suggested to act as second messengers in the communication between microorganisms and epithelial cells, as probes to assess the impact of gut flora on innate immunity in germ-free (GF) mice. Using quantitative real-time polymerase chain reaction analyses, we show that 37/49 NRs are expressed in colonic cells of GF mice. Of these, 5 can be modulated by resident flora: LXRα, RORγ and CAR show reduced expression and Nur77 and GCNF display elevated expression in conventionally raised mice compared with GF. Moreover, increased expression levels of TLR-2 and TLR-5 are observed in specific pathogen-free (SPF) mice compared with GF mice, and CAR expression is connected to the TLR-2 signalling pathway. Infections of GF or SPF mice with Yersinia pseudotuberculosis , show that GF intestinal epithelial cells fail to respond, except for CAR, which is downregulated. In contrast, SPF epithelial cells show a downregulation of all the NRs except CAR, which appears to be unaffected. Our findings indicate that gut flora contributes to the development of an intact barrier function.  相似文献   

11.
Bacterial colonisation of the gut plays a major role in postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Individually, these systems have been implicated in the neuropathology of many CNS disorders and collectively they form an important bidirectional pathway of communication between the microbiota and the brain in health and disease. Regulation of the microbiome–brain–gut axis is essential for maintaining homeostasis, including that of the CNS. Moreover, there is now expanding evidence for the view that commensal organisms within the gut play a role in early programming and later responsivity of the stress system. Research has focused on how the microbiota communicates with the CNS and thereby influences brain function. The routes of this communication are not fully elucidated but include neural, humoral, immune and metabolic pathways. This view is underpinned by studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics which indicate a role for the gut microbiota in the regulation of mood, cognition, pain and obesity. Thus, the concept of a microbiome–brain–gut axis is emerging which suggests that modulation of the gut microflora may be a tractable strategy for developing novel therapeutics for complex stress-related CNS disorders where there is a huge unmet medical need.  相似文献   

12.
The gut microbiota–host co-metabolites are good indicators for representing the cross-talk between host and gut microbiota in a bi-direct manner. There is increasing evidence that levels of aromatic amino acids (AAAs) are associated with the alteration of intestinal microbial community though the effects of long-term microbial disturbance remain unclear. Here we monitored the gut microbiota composition and host–microbiota co-metabolites AAA profiles of mice after gentamicin and ceftriaxone treatments for nearly 4 months since their weaning to reveal the relationship between host and microbiome in long- term microbial disturbances. The study was performed employing targeted LC-MS measurement of AAA-related metabolites and 16S RNA sequence of mice cecal contents. The results showed obvious decreased gut microbial diversity and decreased Firmicutes/Bacteroidetes ratio in the cecal contents after long-term antibiotics treatment. The accumulated AAA (tyrosine, phenylalanine and tryptophan) and re-distribution of their downstreaming metabolites that produced under the existence of intestinal flora were found in mice treated with antibiotics for 4 months. Our results suggested that the long-term antibiotic treatment significantly changed the composition of the gut microbiota and destroyed the homeostasis in the intestinal metabolism. And the urinary AAA could be an indicator for exploring interactions between host and gut microbiota.  相似文献   

13.
Recent findings have revealed that gut microbiota plays a substantial role in modulating diseases such as autism, rheumatoid arthritis, allergies, and cancer that occur at sites distant to the gut. Athymic nude mice have been employed for tumorigenic research for decades; however, the relationships between the gut microbiome and host’s response in drug treatment to the grafted tumors have not been explored. In this study, we analyzed the fecal microbiome of nonxenograft and xenograft nude mice treated with phytosaponins from a popular medicinal plant, Gynostemma pentaphyllum (Gp). Analysis of enterobacterial repetitive intergenic consensus (ERIC)-PCR data showed that the microbiota profile of xenograft mice departed from that of the nonxenograft mice. After ten days of treatment with Gp saponins (GpS), the microbiota of the treated mice was closer to the microbiota at Day 0 before the implantation of the tumor. Data obtained from 16S pyrosequencing of fecal samples reiterates the differences in microbiome between the nonxenograft and xenograft mice. GpS markedly increased the relative abundance of Clostridium cocleatum and Bacteroides acidifaciens, for which the beneficial effects on the host have been well documented. This study, for the first time, characterizes the properties of gut microbiome in nude mice responding to tumor implant and drug treatment. We also demonstrate that dietary saponins such as GpS can potentially regulate the gut microbial ecosystem by increasing the number of symbionts. Interestingly, this regulation of the gut ecosystem might, at least in part, be responsible for or contribute to the anticancer effect of GpS.  相似文献   

14.
We have previously demonstrated that ascorbic acid (AsA) deficiency causes inflammatory changes in the liver and intestine in Osteogenic Disorder Shionogi (ODS) rats, which are unable to synthesize AsA. We have suggested that AsA deficiency increased intestinal interleukine (IL)-6 production, stimulating hepatic acute phase proteins (APPs) expression via the portal vein. In this study, we determined whether these hepatic and intestinal inflammatory changes by AsA deficiency are induced in germ-free (GF) ODS rats. For 18 days, male specific pathogen-free (SPF) ODS rats were fed the basal diet containing 600 mg AsA/kg (control group) or the AsA-free diet (AsA-deficient group) in SPF conditions, while male GF ODS rats were fed the basal diet (control group) or the AsA-free diet (AsA-deficient group) in GF conditions. Firstly, AsA deficiency significantly elevated the hepatic expression of APPs in both SPF and GF rats. In hepatic mRNA levels of some APPs, significant interaction between GF and AsA-deficiency effects was observed. Secondly, AsA deficiency elevated intestinal IL-6 and IL-1β mRNA levels in both SPF and GF rats, and significant interaction between GF and AsA-deficiency effects was observed in these mRNA levels of jejunum and cecum. In SPF and GF rats, AsA deficiency elevated portal IL-6 concentration. These results show that AsA deficiency caused hepatic and intestinal inflammatory changes in both the GF and SPF ODS rats and indicate that AsA deficiency could directly induce intestinal inflammatory changes without the involvement of gut microbiota.  相似文献   

15.
Heat acclimation (HA) is the best strategy to improve heat stress tolerance by inducing positive physiological adaptations. Evidence indicates that the gut microbiome plays a fundamental role in the development of HA, and modulation of gut microbiota can improve tolerance to heat exposure and decrease the risks of heat illness. In this study, for the first time, we applied 16S rRNA gene sequencing and untargeted liquid chromatography–mass spectrometry (LC-MS) metabolomics to explore variations in the gut microbiome and faecal metabolic profiles in rats after HA. The gut microbiota of HA subjects exhibited higher diversity and richer microbes. HA altered the gut microbiota composition with significant increases in the genera Lactobacillus (a major probiotic) and Oscillospira alongside significant decreases in the genera Blautia and Allobaculum. The faecal metabolome was also significantly changed after HA, and among the 13 perturbed metabolites, (S)-AL 8810 and celastrol were increased. Moreover, the two increased genera were positively correlated with the two upregulated metabolites and negatively correlated with the other 11 downregulated metabolites, while the correlations between the two decreased genera and the upregulated/downregulated metabolites were completely contrary. In summary, both the structure of the gut microbiome community and the faecal metabolome were improved after 28 days of HA. These findings provide novel insights regarding the improvement of the gut microbiome and its functions as a potential mechanism by which HA confers protection against heat stress.  相似文献   

16.
BackgroundGut microbiota play important roles in insulin homeostasis and the pathogenesis of non-alcoholic fatty liver diseases (NAFLD). Yijin-Tang (YJT), a traditional Korean and Chinese medicine, is used in the treatment of gastrointestinal diseases and obesity-related disorders such as insulin resistance (IR) and NAFLD.PurposeOur aim was to identify the microbiome-mediated effects of YJT on IR and associated NAFLD by integrating metagenomics and hepatic lipid profile.MethodsC57BL/6J mice were fed a normal chow diet (NC) or high-fat/high-cholesterol (HFHC) diet with or without YJT treatment. Hepatic lipid profiles were analyzed using liquid chromatography/mass spectrometry, and the composition of gut microbiota was investigated using 16S rRNA sequencing. Then, hepatic lipid profiles, gut microbiome, and inflammatory marker data were integrated using multivariate analysis and bioinformatics tools.ResultsYJT improved NAFLD, and 39 hepatic lipid metabolites were altered by YJT in a dose-dependent manner. YJT also altered the gut microbiome composition in HFHC-fed mice. In particular, Faecalibaculum rodentium and Bacteroides acidifaciens were altered by YJT in a dose-dependent manner. Also, we found significant correlation among hepatic phosphatidylglycerol metabolites, F. rodentium, and γδ-T cells. Moreover, interleukin (IL)-17, which is secreted by the γδ-T cell when it recognizes lipid antigens, were elevated in HFHC mice and decreased by YJT treatment. In addition, YJT increased the relative abundance of B. acidifaciens in NC or HFHC-fed mice, which is a gut microbiota that mediates anti-obesity and anti-diabetic effects by modulating the gut environment. We also confirmed that YJT ameliorated the gut tight junctions and increased short chain fatty acid (SCFA) levels in the intestine, which resulted in improved IR.ConclusionThese data demonstrated that gut microbiome and hepatic lipid profiles are regulated by YJT, which improved the IR and NAFLD in mice with diet-induced obesity.  相似文献   

17.
A two by two experimental study has been designed to determine the effect of gut microbiota on energy metabolism in mouse models. The metabolic phenotype of germ-free (GF, n = 20) and conventional (n = 20) mice was characterized using a NMR spectroscopy-based metabolic profiling approach, with a focus on sexual dimorphism (20 males, 20 females) and energy metabolism in urine, plasma, liver, and brown adipose tissue (BAT). Physiological data of age-matched GF and conventional mice showed that male animals had a higher weight than females in both groups. In addition, conventional males had a significantly higher total body fat content (TBFC) compared to conventional females, whereas this sexual dimorphism disappeared in GF animals (i.e., male GF mice had a TBFC similar to those of conventional and GF females). Profiling of BAT hydrophilic extracts revealed that sexual dimorphism in normal mice was absent in GF animals, which also displayed lower BAT lactate levels and higher levels of (D)-3-hydroxybutyrate in liver, plasma, and BAT, together with lower circulating levels of VLDL. These data indicate that the gut microbiota modulate the lipid metabolism in BAT, as the absence of gut microbiota stimulated both hepatic and BAT lipolysis while inhibiting lipogenesis. We also demonstrated that (1)H NMR metabolic profiles of BAT were excellent predictors of BW and TBFC, indicating the potential of BAT to fight against obesity.  相似文献   

18.
Commensal bacteria control the micro-ecology of metazoan epithelial surfaces with pivotal effect on tissue homeostasis and host defense. In contrast to the upper respiratory tract, the lower respiratory tract of healthy individuals has largely been considered free of microorganisms. To understand airway micro-ecology we studied microbiota of sterilely excised lungs from mice of different origin including outbred wild mice caught in the natural environment or kept under non-specific-pathogen-free (SPF) conditions as well as inbred mice maintained in non-SPF, SPF or germ-free (GF) facilities. High-throughput pyrosequencing of reverse transcribed 16S rRNA revealed metabolically active murine lung microbiota in all but GF mice. The overall composition across samples was similar at the phylum and family level. However, species richness was significantly different between lung microbiota from SPF and non-SPF mice. Non-cultivatable Betaproteobacteria such as Ralstonia spp. made up the major constituents and were also confirmed by 16S rRNA gene cloning analysis. Additionally, Pasteurellaceae, Enterobacteria and Firmicutes were isolated from lungs of non-SPF mice. Bacterial communities were detectable by fluorescent in situ hybridization (FISH) at alveolar epithelia in the absence of inflammation. Notably, higher bacterial abundance in non-SPF mice correlated with more and smaller size alveolae, which was corroborated by transplanting Lactobacillus spp. lung isolates into GF mice. Our data indicate a common microbial composition of murine lungs, which is diversified through different environmental conditions and affects lung architecture. Identification of the microbiota of murine lungs will pave the path to study their influence on pulmonary immunity to infection and allergens using mouse models.  相似文献   

19.
Clostridium difficile infection (CDI) is characterized by dysbiosis of the intestinal microbiota and a profound derangement in the fecal metabolome. However, the contribution of specific gut microbes to fecal metabolites in C. difficile-associated gut microbiome remains poorly understood. Using gas-chromatography mass spectrometry (GC-MS) and 16S rRNA deep sequencing, we analyzed the metabolome and microbiome of fecal samples obtained longitudinally from subjects with Clostridium difficile infection (n = 7) and healthy controls (n = 6). From 155 fecal metabolites, we identified two sterol metabolites at >95% match to cholesterol and coprostanol that significantly discriminated C. difficile-associated gut microbiome from healthy microbiota. By correlating the levels of cholesterol and coprostanol in fecal extracts with 2,395 bacterial operational taxonomic units (OTUs) determined by 16S rRNA sequencing, we identified 63 OTUs associated with high levels of coprostanol and 2 OTUs correlated with low coprostanol levels. Using indicator species analysis (ISA), 31 of the 63 coprostanol-associated bacteria correlated with health, and two Veillonella species were associated with low coprostanol levels that correlated strongly with CDI. These 65 bacterial taxa could be clustered into 12 sub-communities, with each community containing a consortium of organisms that co-occurred with one another. Our studies identified 63 human gut microbes associated with cholesterol-reducing activities. Given the importance of gut bacteria in reducing and eliminating cholesterol from the GI tract, these results support the recent finding that gut microbiome may play an important role in host lipid metabolism.  相似文献   

20.

Background

Intestinal bacteria are known to regulate bile acid (BA) homeostasis via intestinal biotransformation of BAs and stimulation of the expression of fibroblast growth factor 19 through intestinal nuclear farnesoid X receptor (FXR). On the other hand, BAs directly regulate the gut microbiota with their strong antimicrobial activities. It remains unclear, however, how mammalian BAs cross-talk with gut microbiome and shape microbial composition in a dynamic and interactive way.

Results

We quantitatively profiled small molecule metabolites derived from host-microbial co-metabolism in mice, demonstrating that BAs were the most significant factor correlated with microbial alterations among all types of endogenous metabolites. A high-fat diet (HFD) intervention resulted in a rapid and significant increase in the intestinal BA pool within 12 h, followed by an alteration in microbial composition at 24 h, providing supporting evidence that BAs are major dietary factors regulating gut microbiota. Feeding mice with BAs along with a normal diet induced an obese phenotype and obesity-associated gut microbial composition, similar to HFD-fed mice. Inhibition of hepatic BA biosynthesis under HFD conditions attenuated the HFD-induced gut microbiome alterations. Both inhibition of BAs and direct suppression of microbiota improved obese phenotypes.

Conclusions

Our study highlights a liver–BA–gut microbiome metabolic axis that drives significant modifications of BA and microbiota compositions capable of triggering metabolic disorders, suggesting new therapeutic strategies targeting BA metabolism for metabolic diseases.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号