首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While traditional cell culture methods have relied on growing cells as monolayers, three-dimensional (3D) culture systems can provide a convenient in vitro model for the study of complex cell–cell and cell–matrix interactions in the absence of exogenous substrates and may benefit the development of regenerative medicine strategies. In this study, mesenchymal stem cell (MSC) spheroids, or “mesenspheres”, of different sizes, were formed using a forced aggregation technique and maintained in suspension culture for extended periods of time thereafter. Cell proliferation and differentiation potential within mesenspheres and dissociated cells retrieved from spheroids were compared to conventional adherent monolayer cultures. Mesenspheres maintained in growth medium exhibited no evidence of cell necrosis or differentiation, while mesenspheres in differentiation media exhibited differentiation similar to conventional 2D culture methods based on histological markers of osteogenic and adipogenic commitment. Furthermore, when plated onto tissue culture plates, cells that had been cultured within mesenspheres in growth medium recovered morphology typical of cells cultured continuously in adherent monolayers and retained their capacity for multi-lineage differentiation potential. In fact, more robust matrix mineralization and lipid vacuole content were evident in recovered MSCs when compared to monolayers, suggesting enhanced differentiation by cells cultured as 3D spheroids. Thus, this study demonstrates the development of a 3D culture system for mesenchymal stem cells that may circumvent limitations associated with conventional monolayer cultures and enhance the differentiation potential of multipotent cells.  相似文献   

2.
Neural stem cell proliferation and differentiation are regulated by external cues from their microenvironment. As endothelial cells are closely associated with neural stem cell in brain germinal zones, we investigated whether endothelial cells may interfere with neurogenesis. Neural precursor cells (NPC) from telencephalon of EGFP mouse embryos were cocultured in direct contact with endothelial cells. Endothelial cells did not modify the overall proliferation and apoptosis of neural cells, albeit they transiently delayed spontaneous apoptosis. These effects appeared to be specific to endothelial cells since a decrease in proliferation and a raise in apoptosis were observed in cocultures with fibroblasts. Endothelial cells stimulated the differentiation of NPC into astrocytes and into neurons, whereas they reduced differentiation into oligodendrocytes in comparison to adherent cultures on polyornithine. Determination of NPC clonogenicity and quantification of LeX expression, a marker for NPC, showed that endothelial cells decreased the number of cycling NPC. On the other hand, the presence of endothelial cells increased the number of neural cells having "side population" phenotype, another marker reported on NPC, which we have shown to contain quiescent cells. Thus, we show that endothelial cells may regulate neurogenesis by acting at different level of NPC differentiation, proliferation and quiescence.  相似文献   

3.
The present study was to investigate the influence of tenuigenin, an active ingredient of Polygala tenuifolia Willd, on the proliferation and differentiation of hippocampal neural stem cells in vitro. Tenuigenin was added to a neurosphere culture and neurosphere growth was measured using MTT assay. The influence of tenuigenin on the proliferation of neural progenitors was examined by Clone forming assay and BrdU detection. In addition, the differentiation of neural stem cells was compared using immunocytochemistry for β III-tubulin and GFAP. The results showed that addition of tenuigenin to the neural stem cell medium increased the number of newly formed neurospheres. More neurons were also obtained when tenuigenin was added in the differentiation medium. These findings suggest that tenuigenin is involved in regulating the proliferation and differentiation of hippocampal neural stem cells. This result may be one of the underlying reasons for tenuigenin’s nootropic and anti-aging effects.  相似文献   

4.
We present the results of a study on the proliferative and differentiation potential of individual clones of stromal fibroblasts growing in monolayer cultures of bone marrow cells. Each precursor cell yielding a large colony in primary culture is capable of up to 34 doublings in vitro. The transplantation of clones or monoclonal strains of stromal fibroblasts into the open system results in the formation of microenvironment consisting of the bone and reticular tissue and is suitable for the differentiation of all three lines of hemopoiesis. Evidence has been obtained that, in a closed system, individual clones are capable of differentiation into the bone, cartilaginous, and reticular tissues. In other words, the adult organism has a common cell precursor for these tissues.  相似文献   

5.
The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3′-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.  相似文献   

6.
Neural stem cells (NSCs) are undifferentiated, primitive cells with important potential applications including the replacement of neural tissue lost due to neurodegenerative diseases, including Parkinson's disease, as well as brain and spinal cord injuries, including stroke. We have developed methods to rapidly expand populations of mammalian stem and progenitor cells in neurosphere cultures. In the present study, flow cytometry was used in order to understand cell cycle activation and proliferation of neural stem and progenitor cells in suspension bioreactors. First, a protocol was developed to analyze the cell cycle kinetics of NSCs. As expected, neurosphere cells were found to cycle slowly, with a very small proportion of the cell population undergoing mitosis at any time. Large fractions (65-70%) of the cells were detected in G1, even in rapidly proliferating cultures, and significant fractions (20%) of the cells were in G0. Second, it was observed that different culturing methods influence both the proportion of neurosphere cells in each phase of the cell cycle and the fraction of actively proliferating cells. The results show that suspension culture does not significantly alter the cell cycle progression of neurosphere cells, while long-term culture (>60 days) results in significant changes in cell cycle kinetics. This suggests that when developing a process to produce neural stem cells for clinical applications, it is imperative to track the cell cycle kinetics, and that a short-term suspension bioreactor process can be used to successfully expand neurosphere cells.  相似文献   

7.
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as “chopping” that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.  相似文献   

8.
9.
10.
Neural stem (NS) cells are multipotent cells defined by their capacity to proliferate and differentiate into all neuronal and glial phenotypes. NS cells can be obtained from specific regions of the adult brain, or generated from embryonic stem cells (ESCs). NS cells differentiate into neural progenitor (NP) cells and subsequently neural precursors, as transient steps towards terminal differentiation into specific mature neuronal or glial phenotypes. When cultured in EGF and FGF2, ESC-derived NS cells have been reported to be stable and multipotent. Conditions that enable differentiation of NS cells through the committed progenitor and precursor stages to specific neuronal subtypes have not been fully established. In this study we investigated, using Lmx1a reporter ESCs, whether the length of neural induction (NI) dictated the phenotypic potential of cultures of ESC-derived NS cells or NP cells. Following 4, 7 or 10 day periods of NI, ESCs in monolayer culture were harvested and cultured as neurospheres, prior to replating as monolayer cultures for several passages in EGF and FGF2. The NS/NP cultures were then directed towards mature neuronal fates over 16-17 days. 4 and 7-day NS cell cultures could not be differentiated towards dopaminergic, serotonergic or cholinergic fates as determined by the absence of tyrosine hydroxylase, 5-HT or choline acetyltransferase (ChAT) immunolabelling. In contrast NS/NP cultures derived after 10 days of NI were able to generate tyrosine hydroxylase and 5-HT positive neurons (24 ± 6 and 13 ± 1% of the βIII-tubulin positive population, respectively, n = 3). Our data suggest that extended periods of neural induction enhanced the potential of mouse ESC-derived NS/NP cells to generate specific subtypes of neurons. NS/NP cells derived after shorter periods of NI appeared to be lineage-restricted in relation to the neuronal subtypes observed after removal of EGF.  相似文献   

11.

Backgrounds and Objective

Spinal cord injury remains to be a challenge to clinicians and it is attractive to employ autologous adult stem cell transplantation in its treatment, however, how to harvest cells with therapeutic potential easily and how to get enough number of cells for transplantation are challenging issues. In the present study, we aimed to isolate skin-derived precursors (SKPs) and dermal multipotent stem cells (dMSCs) simultaneously from single human skin samples from patients with paraplegia.

Methods

Dissociated cells were initially generated from the dermal layer of skin samples from patients with paraplegia and cultured in SKPs proliferation medium. Four hours later, many cells adhered to the base of the flask. The suspended cells were then transferred to another flask for further culture as SKPs, while the adherent cells were cultured in dMSCs proliferation medium. Twenty-four hours later, the adherent cells were harvested and single-cell colonies were generated using serial dilution method. [3H]thymidine incorporation assay, microchemotaxis Transwell chambers assay, RT-PCR and fluorescent immunocytochemistry were employed to examine the characterizations of the isolated cells.

Results

SKPs and dMSCs were isolated simultaneously from a single skin sample. SKPs and dMSCs differed in several respects, including in terms of intermediate protein expression, proliferation capacities, and differentiation tendencies towards mesodermal and neural progenies. However, both SKPs and dMSCs showed high rates of differentiation into neurons and Schwann cells under appropriate inducing conditions. dMSCs isolated by this method showed no overt differences from dMSCs isolated by routine methods.

Conclusions

Two kinds of stem cells, namely SKPs and dMSCs, can be isolated simultaneously from individual human skin sample from paraplegia patients. Both of them show ability to differentiate into neural cells under proper inducing conditions, indicating their potential for the treatment of spinal cord injury patients by autologous cell transplantation.  相似文献   

12.
5-Bromo-2'-deoxyuridin (BrdU) is frequently used in anaylsis of neural stem cell biology, in particular to label and to fate-map dividing cells. However, up to now, only a few studies have addressed the question as to whether BrdU labeling per se affects the cells to be investigated. Here, we focused on the potential impact of BrdU on neurosphere cultures derived from the adult rat brain and on proliferation of progenitors in vivo. In vitro, neurospheres were pulsed for 48?h with BrdU, and cell proliferation, cell cycle, differentiation, survival and adhesion properties were subsequently analyzed. BrdU inhibited the expansion of neural progenitors as assessed by MTS assay and increased the fraction of cells in the G0/G1-phase of the cell cycle. Moreover, BrdU increased cell death and dose-dependently induced adherence of NPCs. Cell adherence was accompanied by a reduced amount of active matrix-metalloproteinase-2 (MMP-2). Furthermore, BrdU repressed neuronal and oligodendroglial differentiation, whereas astroglial fate was not affected. In contrast to the in vitro situation, BrdU apparently did not influence endogenous proliferation of NPCs or neurogenesis in concentrations that are typically used for labeling of neural progenitors in vivo. Our results reveal so far uncharacterized effects of BrdU on adult NPCs. We conclude that, because of its ubiquitous use in stem cell biology, any potential effect of BrdU of NPCs has to be scrutinized prior to interpretation of data.  相似文献   

13.
Neurotrophin channeling of neural progenitor cell differentiation   总被引:13,自引:0,他引:13  
The act of defining neuropoietic progenitor/stem cells is still in its early phases. Epidermal growth factor (EGF) stimulates extended proliferation of aggregates of subventricular striatal cells, taken from E15 mouse striatum, termed neurospheres in liquid culture. We have shown here and in previous work, using either immunohistochemistry or RT-PCR, that neurosphere cells express 13 cytokines (32 tested) and 20 cytokine receptors (28 tested), with 11 potential paracrine and nine potential autocrine loops. The neurotrophin receptors, Trk A, B, and C, were all expressed. Using a newly developed FACS single cell deposition technique, we evaluated the capacity of single EGF stimulated neurosphere cells to respond to the ligands for Trk A and B, nerve growth factor (NGF), and brain-derived neurotrophin factor (BDNF). Addition of NGF or BDNF to EGF for 14 days had no effect, but removal of EGF at day 14 with subsequent addition of BDNF or NGF resulted in an increase in neuronal and astroglial, but not oligodendrocyte, colony cells at 21 and 28 days of culture for BDNF, and of both cell types at 28 days for NGF. Tri-lineage colonies increased at day 21 with BDNF and at day 28 for both NGF and BDNF. Gross colony morphology also showed changes with neurotrophin addition, forming multiple individual cell balls or filamentous spreads. When EGF was withdrawn, a threshold effect was observed, with small, but not large, colonies ceasing growth. BDNF and NGF showed no effects on cell proliferation when compared to EGF controls, as determined by 5'-bromo-2-deoxyuridine (BrdU) incorporation and thus, they appear to affect differentiation of progenitor cells. These data indicate a sequential action of cytokines with EGF maintaining viability and proliferation and blocking differentiation. Removal of EGF is then permissive for the differentiating effects of BDNF and NGF. These data further indicate that the majority of EGF neurosphere clones have neurotrophin dependent tri-lineage potential.  相似文献   

14.
Induced cell fate changes by reprogramming of somatic cells offers an efficient strategy to generate autologous pluripotent stem (iPS) cells from any adult cell type. The potential of iPS cells to differentiate into various cell types is well established, however the efficiency to produce functional neurons from iPS cells remains modest. Here, we generated panneural progenitor cells (pNPCs) from mouse iPS cells and investigated the effect of the neurotrophic growth factor erythropoietin (EPO) on their survival, proliferation and neurodifferentiation. Under neural differentiation conditions, iPS-derived pNPCs gave rise to microtubule-associated protein-2 positive neuronlike cells (34% to 43%) and platelet-derived growth factor receptor positive oligodendrocytelike cells (21% to 25%) while less than 1% of the cells expressed the astrocytic marker glial fibrillary acidic protein. Neuronlike cells generated action potentials and developed active presynaptic terminals. The pNPCs expressed EPO receptor (EPOR) mRNA and displayed functional EPOR signaling. In proliferating cultures, EPO (0.1–3 U/mL) slightly improved pNPC survival but reduced cell proliferation and neurosphere formation in a concentration-dependent manner. In differentiating cultures EPO facilitated neurodifferentiation as assessed by the increased number of β-III-tubulin positive neurons. Our results show that EPO inhibits iPS pNPC self-renewal and promotes neurogenesis.  相似文献   

15.
A role for Lys-His-Gly-NH2 in avian and murine B cell development   总被引:5,自引:0,他引:5  
Lys-His-Gly-NH2 has been claimed to selectively induce B cell precursors to differentiate into mature B lymphocytes. In the present study, the effects of this tripeptide and a control compound having the reverse sequence (Gly-His-Lys-NH2) on growth and differentiation of chicken and mouse B cell precursors were investigated. When chicken bone marrow (BM) cells from 15-day-old embryos were treated for 18 hr with either of the tripeptides, the frequency of Bu-1 antigen-bearing cells increased. Moreover, when embryonic bursa cells were stimulated in vitro with phorbol myristate acetate, which induces them to proliferate and undergo terminal differentiation into immunoglobulin (Ig)-secreting cells, these compounds caused a 10-fold increase in the number of Ig-secreting cells but did not increase cell proliferation. They had no effect on neonatal or adult bursa cells. Embryonic bursa cells were cultured in the presence of either of the tripeptides and metabolically labeled with [35S]methionine. When immunoprecipitated Ig was analyzed by two-dimensional gel electrophoresis, no differences in mu heavy or lambda light chain diversity patterns could be detected, indicating that neither of these compounds enhances Ig diversification. The effect of these tripeptides on murine B cell precursors was assayed in cultures of BM cells depleted of mature B cells by 5-fluorouracil. When precursor cells were incubated without adherent BM stromal cells, they did not respond to the tripeptides. However, after incubation of precursors with adherent stromal BM cells for 2 days, followed by treatment with either of the two tripeptides, differentiation into lipopolysaccharide-reactive mature B cells took place. Incubation of precursors with adherent stromal BM cells in the absence of tripeptides was not sufficient to allow the precursors to complete differentiation. In addition, both tripeptides acted synergistically with interleukin 1 or interleukin 3. In conclusion, these tripeptides seem to enhance precursor B cell differentiation in a lineage-nonspecific manner rather than to function as lineage-specific differentiation hormones.  相似文献   

16.
Characterization of neurosphere cell phenotypes by flow cytometry   总被引:14,自引:0,他引:14  
BACKGROUND: Neural stem cell research regularly utilizes neurosphere cultures as a continuous source of primitive neural cells. Results from current progenitor cell assays show that these cultures contain a low number of neural progenitors. Our goal is to characterize neurosphere cultures and define subpopulations in order to purify neural progenitor cells. METHODS: Cells from embryonic mouse neurosphere cultures were stained with Hoechst 33342 and analyzed by flow cytometry. Subpopulations were sorted based on their relative fluorescence intensity in the blue and red regions of the spectrum. Individual sorted subpopulations were reanalyzed after 7 days in culture. RESULTS: Neurosphere cultures contain a relatively high number of cells that stain weakly with Hoechst 33342. This subpopulation is present when cultured as an entire batch in the presence of epidermal growth factor (EGF). When cultured separately, this subpopulation gives rise to a neurosphere population with essentially the same characteristics as freshly isolated embryonic mouse brain cells but contains substantially fewer weakly Hoechst-stained cells. CONCLUSIONS: Similar to hemopoietic systems, neurosphere cultures contain a subpopulation that can be characterized by a low emission of Hoechst fluorescence. When cultured separately, this subpopulation gives rise to a phenotype similar to freshly isolated, uncultured neural cells.  相似文献   

17.
Here we demonstrate, both in vivo and in vitro, that growth hormone (GH) mediates precursor cell activation in the subventricular zone (SVZ) of the aged (12-month-old) brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation.  相似文献   

18.
Complex intrinsic and extrinsic mechanisms determine neural cell fate during development of the nervous system. Using Id4 deficient mice, we show that Id4 is required for normal development of the central nervous system (CNS), timing neural differentiation in the developing forebrain. In the absence of Id4, the ventricular zone of the neocortex, future hippocampus as well as lateral and medial ganglionic eminences exhibited a 20-30% reduction in mitotic neural precursor cells (NPCs). Although the number of apoptotic cells was significantly increased, the neocortex of Id4(-/-) embryos was consistently thicker due to premature neuronal differentiation, which resulted in an increase in early-born neurons in the adult Id4(-/-) cortex. Late-born cortical neurons and astrocytes in the cortex, septum, hippocampus and caudate putamen of Id4(-/-) adult brains were decreased, however, likely due to the depletion of the NPC pool. Consequently, adult Id4(-/-) brains were smaller and exhibited enlarged ventricles. In vitro analysis of neurosphere cultures revealed that proliferation of Id4-deficient NPCs was impaired and that BMP2-mediated astrocyte differentiation was accelerated in the absence of Id4. Together, these in vivo and in vitro data suggest a crucial role for Id4 in regulating NPC proliferation and differentiation.  相似文献   

19.
Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during differentiation, but they generated normal percentages of neuronal cells. Neuronal fate commitment therefore appears to be controlled through a non-clock function of BMAL1. This study provides insight into how cell autonomous circadian clocks and clock genes regulate adult neural stem cells with implications for treating neurodegenerative disorders and impaired brain functions by manipulating neurogenesis.  相似文献   

20.
Adult rat and human spinal cord neural stem/progenitor cells (NSPCs) cultured in growth factor-enriched medium allows for the proliferation of multipotent, self-renewing, and expandable neural stem cells. In serum conditions, these multipotent NSPCs will differentiate, generating neurons, astrocytes, and oligodendrocytes. The harvested tissue is enzymatically dissociated in a papain-EDTA solution and then mechanically dissociated and separated through a discontinuous density gradient to yield a single cell suspension which is plated in neurobasal medium supplemented with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and heparin. Adult rat spinal cord NSPCs are cultured as free-floating neurospheres and adult human spinal cord NSPCs are grown as adherent cultures. Under these conditions, adult spinal cord NSPCs proliferate, express markers of precursor cells, and can be continuously expanded upon passage. These cells can be studied in vitro in response to various stimuli, and exogenous factors may be used to promote lineage restriction to examine neural stem cell differentiation. Multipotent NSPCs or their progeny can also be transplanted into various animal models to assess regenerative repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号