首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The viral serpin, crmA, is distinguished by its small size and ability to inhibit both serine and cysteine proteases utilizing a reactive loop shorter than most other serpins. Here, we characterize the mechanism of crmA inhibition of serine proteases and probe the reactive loop length requirements for inhibition with two crmA reactive loop variants. P1 Arg crmA inhibited the trypsin-like proteases, thrombin, and factor Xa, with moderate efficiencies (approximately 10(2)-10(4) M(-1)sec(-1)), near equimolar inhibition stoichiometries, and formation of SDS-stable complexes which were resistant to dissociation (k(diss) approximately 10(-7) sec(-1)), consistent with a serpin-type inhibition mechanism. Trypsin was not inhibited, but efficiently cleaved the variant crmA as a substrate (k(cat)/K(M) of approximately 10(6) M(-1) sec(-1)). N-terminal sequencing confirmed that the P1 Arg-P1'Cys bond was the site of cleavage. Altering the placement of the Arg in a double mutant P1 Gly-P1'Arg crmA resulted in minimal ability to inhibit any of the trypsin family proteases. This variant was cleaved by the proteases approximately 10-fold less efficiently than P1 Arg crmA. Surprisingly, pancreatic elastase was rapidly inhibited by wild-type and P1 Arg crmAs (10(5)-10(6) M(-1)sec(-1)), although with elevated inhibition stoichiometries and higher rates of complex dissociation. N-terminal sequencing showed that elastase attacked the P1'Cys-P2'Ala bond, indicating that crmA can inhibit proteases using a reactive loop length similar to that used by other serpins, but with variations in this inhibition arising from different effective P2 residues. These results indicate that crmA inhibits serine proteases by the established serpin conformational trapping mechanism, but is unusual in inhibiting through either of two adjacent reactive sites.  相似文献   

3.
In penaeoid shrimp, contact of spawned eggs with seawater induces egg activation. However, little is known about the factors that influence egg activation in Penaeus monodon. Therefore, the main objective of the present study was to determine whether shrimp-produced proteases that are released in seawater are essential for egg activation. Female shrimp were allowed to spawn in artificial seawater containing protease inhibitors. It was shown that 4-amidinophenylmethanesulfonyl fluoride hydrochloride (APMSF) and soybean trypsin inhibitor (SBTI) inhibited egg activation. High doses of APMSF and SBTI induced only 1–2% complete egg activation. Moreover, when the APMSF- and SBTI- treated eggs were subsequently washed, egg activation did not resume. In contrast, other protease inhibitors, pepstatin A, E-64, and ethylene glycol tetraacetic acid, did not inhibit egg activation, as evident by approximately 98% complete activation. Our results suggest that serine proteases, which are most likely trypsin-like proteases, released in seawater may be involved in egg activation of P. monodon.  相似文献   

4.
Articular cartilage and changes in Arthritis: Matrix degradation   总被引:1,自引:0,他引:1  
While many proteases in articular cartilage have been described, current studies indicate that members of two families of metalloproteases – MMPs and the ADAMTSs – are responsible for the degradation of the major components of this tissue. Collagenases (MMPs) make the first cleavage in triple-helical collagen, allowing its further degradation by other proteases. Aggrecanases (ADAMTSs), in conjunction with other MMPs, degrade aggrecan, a component of the proteoglycan aggregate. Anti-neoepitope antibodies that recognize the cleavage products of collagen and aggrecan generated by these enzymes are now available and are being used to detect the sites of action and to quantitate degradation products.  相似文献   

5.
Phenoloxidase in the hemolymph of Sarcophaga bullata larvae is present as an inactive proenzyme form. Localization studies indicate that the majority of the prophenoloxidase is present in the plasma fraction whereas only a minor fraction (about 4%) is present in the cellular compartments (hemocytes). Inactive prophenoloxidase can be activated by zymosan, not by either endotoxin or laminarin. This activation process is inhibited by the serine protease inhibitors, benzamidine and p-nitrophenyl-p~-guanidobenzoate. Exogenously added proteases, such as chymotrypsin and subtilisin, also activated the prophenoloxidase in the whole hemolymph but failed to activate the partially purified proenzyme. However, an activating enzyme isolated from the larval cuticle, which exhibits trypsinlike specificity, activated the partially purified prophenoloxidase. Inhibition studies and activity measurements also revealed the presence of a similar activating enzyme in the hemolymph. Thus, the phenoloxidase system in Sarcophaga bullata larval hemolymph seems to be comprised of a cascade of reactions. An endogenous protease inhibitor isolated from the larvae inhibited chymotrypsin-mediated prophenoloxidase activation but failed to inhibit the cuticular activating enzyme-catalyzed activation. Based on these studies, the roles of prophenoloxidase, endogenous activating proteases, and protease inhibitor in insect immunity are discussed.  相似文献   

6.
Human chymotrypsin C (CTRC) protects against pancreatitis by degrading trypsinogen and thereby curtailing harmful intra-pancreatic trypsinogen activation. Loss-of-function mutations in CTRC increase the risk for chronic pancreatitis. Here we describe functional analysis of eight previously uncharacterized natural CTRC variants tested for potential defects in secretion, proteolytic stability, and catalytic activity. We found that all variants were secreted from transfected cells normally, and none suffered proteolytic degradation by trypsin. Five variants had normal enzymatic activity, whereas variant p.R29Q was catalytically inactive due to loss of activation by trypsin and variant p.S239C exhibited impaired activity possibly caused by disulfide mispairing. Surprisingly, variant p.G214R had increased activity on a small chromogenic peptide substrate but was markedly defective in cleaving bovine β-casein or the natural CTRC substrates human cationic trypsinogen and procarboxypeptidase A1. Mutation p.G214R is analogous to the evolutionary mutation in human mesotrypsin, which rendered this trypsin isoform resistant to proteinaceous inhibitors and conferred its ability to cleave these inhibitors. Similarly to the mesotrypsin phenotype, CTRC variant p.G214R was inhibited poorly by eglin C, ecotin, or a CTRC-specific variant of SGPI-2, and it readily cleaved the reactive-site peptide bonds in eglin C and ecotin. We conclude that CTRC variants p.R29Q, p.G214R, and p.S239C are risk factors for chronic pancreatitis. Furthermore, the mesotrypsin-like CTRC variant highlights how the same natural mutation in homologous pancreatic serine proteases can evolve a new physiological role or lead to pathology, determined by the biological context of protease function.  相似文献   

7.
Mesotrypsin displays unusual resistance to inhibition by polypeptide trypsin inhibitors and cleaves some such inhibitors as substrates, despite a high degree of conservation with other mammalian trypsins. Substitution of Arg for the generally conserved Gly-193 has been implicated as a critical determinant of the unusual behavior of mesotrypsin toward protein protease inhibitors. Another relatively conserved residue near the trypsin active site, Tyr-39, is substituted by Ser-39 in mesotrypsin. Tyr-39, but not Ser-39, forms a hydrogen bond with the main chain amide nitrogen of the P4′ residue of a bound protease inhibitor. To investigate the role of the Tyr-39 H-bond in trypsin-inhibitor interactions, we reciprocally mutated position 39 in mesotrypsin and human cationic trypsin to Tyr-39 and Ser-39, respectively. We assessed inhibition constants and cleavage rates of canonical protease inhibitors bovine pancreatic trypsin inhibitor (BPTI) and the amyloid precursor protein Kunitz protease inhibitor domain by mesotrypsin and cationic trypsin variants, finding that the presence of Ser-39 relative to Tyr-39 results in a 4- to 13-fold poorer binding affinity and a 2- to 18-fold increase in cleavage rate. We also report the crystal structure of the mesotrypsin-S39Y•BPTI complex, in which we observe an H-bond between Tyr-39 OH and BPTI Ile-19 N. Our results indicate that the presence of Ser-39 in mesotrypsin, and corresponding absence of a single H-bond to the inhibitor backbone, makes a small but significant functional contribution to the resistance of mesotrypsin to inhibition and the ability of mesotrypsin to proteolyze inhibitors.  相似文献   

8.
Autophagy is a highly conserved process that degrades cellular long-lived proteins and organelles. Accumulating evidence indicates that autophagy plays a critical role in kidney maintenance, diseases and aging. Ischemic, toxic, immunological, and oxidative insults can cause an induction of autophagy in renal epithelial cells modifying the course of various kidney diseases. This review summarizes recent insights on the role of autophagy in kidney physiology and diseases alluding to possible novel intervention strategies for treating specific kidney disorders by modifying autophagy.  相似文献   

9.
Autophagy is a highly conserved process that degrades cellular long-lived proteins and organelles. Accumulating evidence indicates that autophagy plays a critical role in kidney maintenance, diseases and aging. Ischemic, toxic, immunological, and oxidative insults can cause an induction of autophagy in renal epithelial cells modifying the course of various kidney diseases. This review summarizes recent insights on the role of autophagy in kidney physiology and diseases alluding to possible novel intervention strategies for treating specific kidney disorders by modifying autophagy.  相似文献   

10.
A new buffer system for acid PAGE typing of protease inhibitor (Pi) is described. This buffer system replaces pyridine and cacodylic acid with L-histidine and MES, making the buffer less toxic and less expensive than the acid PAGE system commonly used but with no loss of resolution.  相似文献   

11.
J Millet  J Gregoire 《Biochimie》1979,61(3):385-391
A specific inhibitor of intracellular serylprotease from Bacillus subtilis has been isolated from both growing and sporulating cells. Like other protease inhibitors isolated from eukaryotic cells, the inhibitor from B. subtilis is a thermostable protein. A purification method is described. The molecular weight estimated by Biogel filtration and SDS gel electrophoresis is about 15,500. Both proteolytic and esterolytic activities of intracellular protease are equally sensitive to inhibition. With azocoll or Z-tyrosine p-nitrophenylester as substrates, noncompetitive inhibition patterns are observed. The inhibitor has no effect on the proteolytic or esterolytic activities of the extracellular serylprotease. A similar thermostable inhibitor is also present in Bacillus megaterium.  相似文献   

12.
13.
Interleukin‐6 (IL‐6) is a multifunctional cytokine that employs IL‐6 classic and trans‐signalling pathways, and these two signal channels execute different or even opposite effects in certain diseases. As a cardinal event of diabetic kidney disease (DKD), whether the podocyte abnormalities are associated with IL‐6 signalling, especially classic or trans‐signalling respectively, remains unclear. In this study, we identified that the circulatory IL‐6, soluble IL‐6R (sIL‐6R) and soluble glycoprotein 130 (sgp130) levels are elevated in patients with DKD. The expressions of membrane‐bound IL‐6R (mIL‐6R), sIL‐6R and gp130 are enhanced in kidney cortex of diabetic mice accompanying with activated STAT3 by tyrosine 705 residue phosphorylation, while not serine 727. Above data infer both classic signalling and trans‐signalling of IL‐6 are activated during DKD. In cultured podocyte, high glucose (HG) up‐regulates the expression of mIL‐6R and gp130, as well as STAT3 tyrosine 705 phosphorylation, in a time‐dependent manner. Entirely blocking IL‐6 signalling by gp130 shRNA, gp130 or IL‐6 neutralizing antibodies attenuates HG‐induced podocyte injury. Interestingly, either inhibiting IL‐6 classic signalling by mIL‐6R shRNA or suppressing its trans‐signalling using sgp130 protein dramatically alleviates HG‐induced podocyte injury, suggesting both IL‐6 classic signalling and trans‐signalling play a detrimental role in HG‐induced podocyte injury. Additionally, activation of IL‐6 classic or trans‐signalling aggravates podocyte damage in vitro. In summary, our observations demonstrate that the activation of either IL‐6 classic or trans‐signalling advances podocyte harming under hyperglycaemia. Thus, suppressing IL‐6 classic and trans‐signalling simultaneously may be more beneficial in podocyte protection and presents a novel therapeutic target for DKD.  相似文献   

14.
Urokinase-type plasminogen activator (uPA) is a serine protease involved in pericellular proteolysis and tumor cell metastasis via plasmin-mediated degradation of extracellular matrix proteins. Plasma uPA is inhibited by the serine protease inhibitor protein C inhibitor (PCI) by the insertion of PCI's reactive site loop into the active site of the protease. To better understand the structural aspects of this inhibition, 15 reactive-site mutants of recombinant PCI (rPCI) were assayed for differences in uPA inhibition. These assays revealed that substitutions at the P1 Arg354 and P3 Thr352 sites of rPCI were detrimental to inhibitory activity, while P3 Arg357 mutations had little effect upon the inhibition rate. However, replacement of the P2 Phe353 with small residues like Ala and Gly increased the effectiveness of rPCI three- to four fold. To explain these altered rates of inhibition, a computer-derived molecular model of uPA was generated and docked to a model of PCI to simulate complex formation. The changes made by mutagenesis were then recreated in the model of uPA–PCI. In accordance with the kinetic data, the poor performance of P3 variants is primarily attributable to charge repulsion, while alleviation of steric hindrance at P2 produces the observed increase in uPA inhibition. In the model, residues at P3 interact with PCI rather than uPA, consistent with P3 variants demonstrating that little variation from wild-type activity. Ultimately, this combination of mutagenesis and molecular modeling will further refine our understanding of the interaction between PCI and uPA.  相似文献   

15.
Serine protease dependent cell apoptosis (SPDCA) is a recently described caspase independent innate apoptotic pathway. It differs from the traditional caspase dependent apoptotic pathway in that serine proteases, not caspases, are critical to the apoptotic process. The mechanism of SPDCA is still unclear and further investigation is needed to determine any role it may play in maintaining cellular homeostasis and development of disease. The current knowledge about this pathway is limited only to the inhibitory effects of some serine protease inhibitors. Synthetic agents such as pefabloc, AEBSF and TPCK can inhibit this apoptotic process in cultured cells. There is little known, however, about biologically active agents available in the cell which can inhibit SPDCA. Here, we show that over-expression of a cellular protein called serine protease inhibitor Kazal (SPIK/TATI/PSTI) results in a significant decrease in cell susceptibility to SPDCA, suggesting that SPIK is an apoptosis inhibitor suppressing this pathway of apoptosis. Previous work has associated SPIK and cancer development, indicating that this finding will help to open the doorway for further study on the mechanism of SPDCA and the role it may play in cancer development.  相似文献   

16.
The interactions of chymotrypsin, subtilisin and trypsin with a low MW proteinase inhibitor from potatoes were investigated. The Ki value calculated for the binding of inhibitor to chymotrypsin was 1.6 ± 0.9 × 10?10M, while the second-order rate constant for association was 6 × 105 M?1/sec. Although binding was not observed to chymotrypsin which had been treated with diisopropyl fluorophosphate or with l-tosylamide-2-phenylethyl chloromethyl ketone, the 3-methylhistidine-57 derivative bound inhibitor with a Ki value of 9.6 × 10?9 M. The inhibitor also exhibited a tight association with subtilisin (Ki < 4 × 10?9 M). In contrast, little inhibition of trypsin was observed, and this was believed to be due to low levels of a contaminant in our preparations. No evidence for reactive site cleavage was observed after incubation of the inhibitor with catalytic amounts of chymotrypsin or subtilisin at acid pH.  相似文献   

17.
Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease   总被引:1,自引:0,他引:1  
A method to rapidly screen libraries of cyclic peptides in vivo for molecules with biological activity has been developed and used to isolate cyclic peptide inhibitors of the ClpXP protease. Fluorescence activated cell sorting was used in conjunction with a fluorescent reporter to isolate cyclic peptides that inhibit the proteolysis of tmRNA-tagged proteins in Escherichia coli. Inhibitors shared little sequence similarity and interfered with unexpected steps in the ClpXP mechanism in vitro. One cyclic peptide, IXP1, inhibited the degradation of unrelated ClpXP substrates and has bactericidal activity when added to growing cultures of Caulobacter crescentus, a model organism that requires ClpXP activity for viability. The screen used here could be adapted to identify cyclic peptide inhibitors of any enzyme that can be expressed in E. coli in conjunction with a fluorescent reporter.  相似文献   

18.
HIV蛋白酶(protease,PR)耐药突变的大量出现严重地影响了AIDS的治疗.应用突变PR对展示HIVPR靶序列随机文库的噬菌体进行切割筛选,可获得突变PR的敏感噬菌体,该噬菌体可用于针对HIVPR耐药突变株的蛋白酶抑制剂(protease inhibitor,PI)新药筛选.为了探索这一可能性,将包含HIVPR靶位点P2/NC序列的Gag蛋白CAP2NC片段展示于噬菌体表面,并在该片段的N端连接一可与人免疫球蛋白分子特异结合的固相化标签序列LD3,将该噬菌体固定于人免疫球蛋白包被的酶标板上,用HIVSF2PR进行切割,用抗M13噬菌体酶标抗体ELISA法检测未被切割的剩余噬菌体以反映切割效果.结果表明,所构建的噬菌体能被HIVPR有效切割,最大切割效应可达80%以上,其ELISA检测值明显下降,并且该切割效应与HIVPR呈明显的量效关系,能被PI类药物Indinavir(IDV)特异抑制.首次成功构建了展示HIV Gag CAP2NC片段的噬菌体蛋白酶切割模型,不仅可为研究HIVPR的耐药性变异及其靶序列的适应性变异提供一新的研究平台,同时也为构建一种全新的PI类药物,尤其是针对耐药的PI类药物大规模体外噬菌体筛选模型打下基础.  相似文献   

19.
The protein content of muscle is determined by the relative rates of synthesis and degradation. The balance between this process determines the number of functional contractile units within each muscle cell. Myofibril-bound protease, protease M previously reported in mouse skeletal muscle could be solubilized from the myofibrillar fraction by salt and acid treatment and partially purified by Mono Q and Superose 12 chromotagraphy. Isolated protease M activity in vitro on whole myofibrils resulted in myosin, actin, troponin T, α-actinin and tropomyosin degradation. Protease M is serine type and was able to hydrolyze trypsin-type synthetic substrates but not those of chymotrypsin type. In gel filtration chromatography, protease M showed Mr 120.0 kDa. The endogenous inhibitor (MHPI) is a glycoprotein (110.0 kDa) that efficiently blocks the protease M-dependent proteolysis of myofibrillar proteins in a dose-dependent way, as shown by electrophoretic analysis and synthetic substrates assays. Protease M-Inhibitor system would be implicated in myofibrillar proteins turnover.  相似文献   

20.
Direct scanning of the fluorescence of DNA in ethidium bromide-stained agarose gels allowed the quantification of closed and open circular DNA forms. Fluorescence of form I was higher than expected compared to form II. Application of this technique is shown for an intercalating drug treatment of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号