首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To quantify bioturbation activity in Tikehau lagoon, a tracer made of black basaltic sand was poured over the natural white calcareous sediment surface. Three stations respectively located on the inner flat (-3m), the inner slope (-9m), and the lagoon floor (-19m), were studied for short periods of time (48 hours). Bioturbation by macrofauna was quantified by volume of sediment ejected onto the experimental surface and by volume of tracer incorporated into sediment. The results showed a rapid incorporation of sedimented particles at the interface by way of the funnels and burrows of surface deposit feeders and carnivores. Expelled quantities varied with respect to site location: 213 cm3 · m−2 · 24 h−1 in the inner flat; 98.9 cm3 · m−2 · 24 h−1 in the inner slope; 7.9 m3 · m−2 · 24 h−1 in the lagoon floor. Bioturbation by decapod megafauna appeared to be important in the dynamics of the sediments in the deepest areas of the lagoon. In these areas, with almost no hydrodynamical impacts on sediments, bioturbating events were responsible for sediment mixing (despite lower absolute rates than in shallow area). Hydrodynamics controlled the spatial distribution of macroinvertebrate trophic groups by its effects on sedimentation.  相似文献   

2.
Axenic crown gall tumor callus (from Vinca rosea L.) which is known to synthesize its own auxin is able to convert exogenous 14C-indole or tryptamine to indoleacetic acid [5.4 and 10 × 10−6μmol × h−1× (g fr wt)−1 respectively], but little or no 3H-tryptophan is converted [less than 6.4 × 10−8×μmol × h−1× (g fr wt)−1].  相似文献   

3.
The growth and grazing characteristics of Poterioochromonas malhamensis (Pringsheim) Peterfi (= Ochromonas malhamensis Pringsheim) (ca. 8 μm) feeding on phytoplankton, including the cyanobacteria Synechococcus sp. (ca. 2 μm) and Microcystis viridis (A. Brown) Lemmermann (ca. 6 μm) and the green alga Chlorella pyrenoidosa Chick (ca. 13 μm), were investigated in laboratory experiments involving the following treatments: (1) light without added algal prey (autotrophy), (2) light with added algal prey (mixotrophy), and (3) dark with added algal prey (phagotrophy). There were significantly higher cell numbers under mixotrophic and phagotrophic growth than under autotrophic growth. With phytoplankton as food, growth rates under both mixotrophy and phagotrophy were about two or three times higher than those under autotrophy, indicating that the algal diets were readily able to support the population growth of P. malhamensis. There were no significant differences in growth rate between mixotrophic and phagotrophic cultures during exponential growth. The ingestion rate of P. malhamensis with algal prey was also similar under both continuous light and dark. Poterioochromonas malhamensis ingested on average 0.27 M. viridis cells·flagellate− 1 ·h− 1 and 0.18 C. pyrenoidosa cells·flagellate− 1 ·h− 1 in continuous light and 0.25 M. viridis cells·flagellate− 1 ·h− 1 and 0.18 C. pyrenoidosa cells·flagellate− 1 ·h− 1 in continuous dark during exponential growth. The results showed that light had no effect on the growth and ingestion rates of P. malhamensis for phagotrophy during exponential growth. However, phagotrophic populations of P. malhamensis were incapable of growth in continuous darkness for longer than 5 days. Populations of P. malhamensis showed no increase when prey was added again after 4 days in continuous darkness, indicating that light is necessary for sustained phagotrophic growth of P. malhamensis. The study suggests that P. malhamensis, which has strong tolerance for light, is light dependent for phagotrophy.  相似文献   

4.
Heterogeneities occur in various bioreactor designs including cell retention devices. Whereas in external devices changing environmental conditions cannot be prevented, cells are retained in their optimal environment in internal devices. Conventional reverse-flow diafiltration utilizes an internal membrane device, but pulsed feeding causes spatial heterogeneities. In this study, the influence of conventional reverse-flow diafiltration on the yeast Hansenula polymorpha is investigated. Alternating 180 s of feeding with 360 s of non-feeding at a dilution rate of 0.2 h−1 results in an oscillating DOT signal with an amplitude of 60%. Thereby, induced short-term oxygen limitations result in the formation of ethanol and a reduced product concentration of 25%. This effect is enforced at increased dilution rate. To overcome this cyclic problem, sequential operation of three membranes is introduced. Thus, quasi-continuous feeding is achieved reducing the oscillation of the DOT signal to an amplitude of 20% and 40% for a dilution rate of 0.2 h−1 and 0.5 h−1, respectively. Fermentation conditions characterized by complete absence of oxygen limitation and without formation of overflow metabolites could be obtained for dilution rates from 0.1 h−1 to 0.5 h−1. Thus, sequential operation of three membranes minimizes oscillations in the DOT signal providing a nearly homogenous culture over time.  相似文献   

5.
《Process Biochemistry》1999,34(3):213-219
A kinetic study of the methanogenic phase was carried out on a pilot lab scale anaerobic fluidized bed reactor (AFBR) in batch mode. An examination of the effect of initial acetate concentration, bed expansion and bed segregation is presented.Experimental data observed for the acetate removal against time were adjusted to a zero-order kinetic equation, over the chemical oxygen demand (COD) range studied (1430–5340 mg litre−1), independently of the bed expansion (11–37%). The kinetic constant was calculated using robust regression analysis. The zero-order kinetic constant, K0 was between 1180–1380 mg COD litre−1 h−1 on the fixed bed volume basis, and the maximum specific substrate utilization rate, k, was between 145–198 mg COD g VS−1 h−1.The kinetic behaviour was found to be different throughout the reactor, on the fixed bed volume basis and the activity at the bottom of the bed was lower than the activity in the upper region. However, on an attached volatile solids basis, the activity at the bottom level was the greatest.  相似文献   

6.
The efficacy of visual and non-visual feeding among pelagic striped bass Morone saxatilis larvae adapted to a turbid estuary was determined in the laboratory in clear water. Capture of Artemia salina (density 100 l1) was significantly affected by the interaction between age of larvae (range: 8–25 days post-hatch, dph) and light intensity (range: 0–10·6 μmol s1 m2 at the water surface). Visual feeding by larvae aged 9–11 dph was highest in dim light (0·086–0·79 μmol s1 m2), with fish capturing up to 5 prey larva1 h1. As the larvae grew, prey capture in brighter light improved, associated with an increasing proportion of twin cone photoreceptors and improving ability of the retina to light- and dark-adapt. By age >22 dph, mean prey capture was greatest at highest light intensities (0·79 and 10·6 μmol s1 m2) exceeding 100 prey larva1 h1. Incidence of feeding larvae generally improved as the larvae grew, reaching >80% in all light intensities from 16 dph onwards. The lower threshold for visual feeding, between 0·0084 and 0·03 μmol s1 m2, remained constant as the larvae grew, despite an increasing density of rod photoreceptors. Below this threshold, non-visual feeding was evident at a low rate (<6 prey larva1 h1) that was independent of larval age.  相似文献   

7.
It is generally accepted that hypertension and other vascular pathologies increase in diabetes mellitus (DM) patients as a result of the renin–angiotensin–aldosterone (RAA) system. In this study, changes in the renin‐angiotensin‐aldosterone (RAA) system level was determined in Streptozotocin (STZ)‐injected rats. A total of 46 female Wistar albino rats (180–220 g body weight) was utilized in these experiments. STZ was given intraperitoneally to induce diabetes in rats. Streptozotocin (60 mg kg−1 body weight) was dissolved in 0·1 m citrate–‐phosphate buffer (pH 4–5). The non‐diabetic rats were injected with sterilized buffer alone to act as a control group. Blood glucose levels were 398±8·2 mg dl−1, 488±11·75 mg dl−1 and 658±29·6 mg dl−1 at days 3, 12 and 30 respectively. The level of plasma renin activity (PRA) was measured as 7·69±1·07 ng ml−1 h−1; 1·82±0·22 ng ml−1 h−1 and 0·67±0·12 ng ml−1 h−1 at days 3, 12 and 30, respectively. These values showed that the PRA levels are decreased with increased time period. Serum angiotensin converting enzyme (ACE, E.C. 3.4.15.1) levels were increased at days 12 and 30 (p<0·05 and p<0·005), whereas serum aldosterone levels were increased at days 3 and 12 (p<0·05). The level of urea and creatinine increased at days 12 and 30 (p<0·05 and p<0·005, respectively) when compared to the control group. The data from these experiments indicate that the PRA level decreased whereas ACE activity level increased in diabetic rats compared with the control. Aldosterone levels increased at the first stage of the experiment, but then decreased by the end of the experiment as a result of changes in renin and ACE levels. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
《Process Biochemistry》1999,34(4):329-333
This paper deals with the studies on Cephalosporin-C production in a lab-scale airlift reactor using Cephalosporium acremonium. Various growth modes, viz. pellets and Siran supported bioparticles were used to improve the process over conventional free mycelial fermentation. Cephalosporin-C production was significantly improved by using bioparticles over the free mycelial culture, probably due to the enhanced mass transfer in the fermentation broth. However, the biofilm of the bioparticles became unstable as the fermentation proceeded, and increase in the free cells in the broth occurs. The maximum specific growth rate of free cells, pellets and Siran carrier were observed to be 0·037, 0·033 and 0·045 h−1, respectively. The oxygen transfer coefficient also improved for the immobilised modes (100 h−1, 70 h−1 for Siran carrier and pellets) and thereby enhanced specific antibiotic productivity, 18–28% were observed.  相似文献   

9.
Short-term (3h) acquisition of iron (16 nmol 59FeCl3 l−1) from oxic, alkaline fresh water was assessed in rainbow trout Oncorhynchus mykiss in the presence or absence of a range of iron chelators, all of which had differing binding affinities for ferric iron [100 μmol l−1 of desferrioxamine (DFO), Log10K1 32·5; citric acid Log10K1 11·9; nitrilotriacetic acid (NTA) Log10K1 15·9, CP20 and CP94 (Log10K1 > 30), as well as humic acid (HA), Log10K1 5·04, 5 mg l−1]. In the absence of chelators (control conditions) O. mykiss acquired iron from the water under laboratory lights (wavelength range of the lights 440–650 nm, peak intensity 548–626 nm) via the gill. In these conditions iron uptake onto the gill had a maximum transport capacity (Jmax) of 11·2 pmol Fe g−1 h−1 (gill organ mass) and a Km of 21·3 nmol Fe l−1 h−1. Furthermore, there were two components to iron accumulation into the carcass of these fish, a slow rate of aqueous iron uptake at low concentrations (6–24 nmol Fe l−1), followed by a faster rate of uptake at higher iron concentrations (48–96 nmol Fe l−1), suggesting that the rate-limiting step of iron uptake at low iron concentrations is the apical entry step. O. mykiss also acquired iron in the presence of HA, although the majority of the other chelators prevented iron uptake. Ultraviolet light (354 nm) treatment of Fe-DFO increased iron bioavailability. Results suggest that rainbow trout are able to access either the predicted very low concentrations (picomolar) of ferrous iron present in fresh water or the ferric oxide complexes present in oxic environments. The iron uptake rate measured (0·75 pmol g−1 h−1) would be sufficient to provide a substantial proportion (c. 85%) of the daily iron requirements of growing salmonid fry.  相似文献   

10.

This study concerned the anaerobic treatment of five different industrial wastewaters with a diverse and complex chemical composition. The kinetics of biotransformation of this wastewater at different chemical oxygen demand (COD) were studied in a batch reactor. Wastewater from an amino acid producing industry (Fermex) and from a tank that received several types of wastewaters (collector) contained 0.83 g l−1 and 0.085 g l−1 sulfate, respectively. During the study period of 20 days, methane formation was observed in all types of wastewaters. Studies on COD biodegradation showed the reaction velocity was higher for Fermex wastewater and lower for collector wastewater, with values of 0.0022 h−1 and 0.0011 h−1, respectively. A lower methanogenic activity of 0.163 g CH4 day−1 g−1 volatile suspended solids (VSS) and 0.20 g CH4 day−1 g−1 VSS, respectively, was observed for paper producing and brewery wastewater. Adapted granular sludge showed the best biodegradation of COD during the 20-day period. The sulfate-reducing activity in pharmaceutical and collector wastewater was studied. A positive effect of sulfate-reducing activity on methanogenic activity was noted for both types of wastewaters, both of which contained sulfate ions. All reactions of methane generation for the tested industrial wastewaters were first-order. The results of this study suggest that the tested wastewaters are amenable to anaerobic treatment.

  相似文献   

11.

Purpose

The present study evaluates the intra- and inter-unit variability of the GlobalSat® DG100 GPS data logger/receiver (DG100) when estimating outdoor walking distances and speeds.

Methods

Two experiments were performed using healthy subjects walking on a 400 m outdoor synthetic track. The two experiments consisted of two different outdoor prescribed walking protocols with distances ranging from 50 to 400 m. Experiment 1 examined the intra-unit variability of the DG100 (test-retest reproducibility) when estimating walking distances. Experiment 2 examined the inter-unit variability of four DG100 devices (unit to unit variability) when estimating walking distances and speeds.

Results

The coefficient of variation [95% confidence interval], for the reliability of estimating walking distances, was 2.8 [2.5–3.2] %. The inter-unit variability among the four DG100 units tested ranged from 2.8 [2.5–3.2] % to 3.9 [3.5–4.4] % when estimating distances and from 2.7 [2.4–3.0] % to 3.8 [3.4–4.2] % when estimating speeds.

Conclusion

The present study indicates that the DG100, an economical and convenient GPS data logger/receiver, can be reliably used to study human outdoor walking activities in unobstructed conditions. This device let facilitate the use of GPS in studies of health and disease.  相似文献   

12.
The effects of NH4+ assimilation on dark carbon fixation and β-1,3-glucan metabolism in the N-limited marine diatom Skeletonema costatum (Grev.) Cleve (Bacillariophyceae) were investigated by chemical analysis of cell components and incorporation of 14C-bicarbonate. The diatom was grown in pH-regulated batch cultures with a 14:10 h LD cycle until N depletion. The cells were then incubated in the dark with 14C-bicarbonate, but without a source of N for 2 h, then in the dark with 63 μmol·L−1 NH4+ for 3 h. Without N, the cellular concentration of free amino acids was almost constant (∼4.5 fmol·cell−1). Added NH4+ was assimilated at a rate of 12 fmol·cell−1·h−1, and the cellular amino acid pool increased rapidly (doubled in <1 h, tripled in <3 h). The glutamine level increased steeply (45× within 3 h), and the Gln/ Glu ratio increased from 0.1 to 2.4 within 3 h. The rate of dark C fixation during N depletion was only 1.0 fmol·cell−1·h−1. The addition of NH4+ strongly stimulated dark C fixation, leading to an assimilation rate of 4.0 fmol·cell−1·h−1, corresponding to a molar C/N uptake ratio of 0.33. Biochemical fractionation of organic 14C showed no significant 14C fixation into amino acids during N depletion, but during the first 1–2 h of NH4+ assimilation, amino acids were rapidly radiolabeled, accounting for virtually all net 14C fixation. These results indicate that anaplerotic β-carboxylation is activated during NH4+ assimilation to provide C4 intermediates for amino acid biosynthesis. The level of cellular β-1,3-d-glucan was constant (16.5 pg·cell−1) during N depletion, but NH4+ assimilation activated a mobilization of 28% of the reserve glucan within 3 h. The results indicate that β-1,3-glucan in diatoms is the ultimate substrate for β-carboxylation, providing precursors for amino acid biosynthesis in addition to energy from respiration.  相似文献   

13.
An upflow velocity of 0.21 m h–1 was optimal to minimize the effect of organic shocks (from 6 to 30 kg COD m–3 d–1) when operating an upflow anaerobic filter for the treatment of an oleic acid-based effluent (50% w/v COD). This value represented the transition between a mass transfer controlled regime and a kinetic regime. Under hydraulic shock loads, an increase in upflow velocity from 0.3 to 0.4m h–1 decreased the removal efficiency from 68 to 51%.  相似文献   

14.
15.
In this work, we performed recovery of ethanol from a fermentation broth of banana pseudostem by pervaporation (PV) as a lower-energy-cost alternative to traditional separation processes such as distillation. As real fermentation systems generally contain by-products, it was investigated the effects of different components from the fermentation broth of banana pseudostem on PV performance for ethanol recovery through commercial flat sheet polydimethylsiloxane (PDMS) membrane. The experiments were compared to a binary solution (ethanol/water) to determine differences in the results due to the presence of fermentation by-products. A real fermented broth of banana pseudostem was also used as feed for the PV experiments. Seven by-products from fermented broth were identified: propanol, isobutanol, methanol, isoamyl alcohol, 1-pentanol, acetic acid, and succinic acid. Moreover, the residual sugar content of 3.02 g/L1 was obtained. The presence of methanol showed the best results for total permeate flux (0.1626 kg·m−2·h−1) and ethanol permeate flux (0.0391 kg·m−2·h−1) during PV at 25°C and 3 wt% ethanol, also demonstrated by the selectivity and enrichment factor. The lowest total fluxes of permeate were observed in the experiments containing the acids. Better permeance of 0.1171 from 0.0796 kg·m−2·h−1 and membrane selectivity of 9.77 from 9.30 were obtained with real fermentation broth than with synthetic solutions, possibly due to the presence of by-products in the multicomponent mixtures, which contributed to ethanol permeation. The results of this work indicate that by-products influence pervaporation of ethanol with hydrophobic flat sheet membrane produced from the fermented broth of banana pseudostem.  相似文献   

16.
We investigated the composition of benthic microbial mats in permanently ice-covered Lake Hoare, Antarctica, and their irradiance vs. photosynthetic oxygen exchange relationships. Mats could be subdivided into three distinct depth zones: a seasonally ice-free “moat” zone and two under-ice zones. The upper under-ice zone extended from below the 3.5 m thick ice to approximately 13 m and the lower from below 13 m to 22 m. Moat mats were acclimated to the high irradiance they experienced during summer. They contained photoprotective pigments, predominantly those characteristic of cyanobacteria, and had high compensation and saturating irradiances (Ec and Ek) of 75 and 130 μmol photons·m−2·s−1, respectively. The moat mats used light inefficiently. The upper under-ice community contained both cyanobacteria and diatoms. Within this zone, biomass (as pigments) increased with increasing depth, reaching a maximum at 10 m. Phycoerythrin was abundant in this zone, with shade acclimation and efficiency of utilization of incident light increasing with depth to a maximum of 0.06 mol C fixed·mol−1 incident photons under light-limiting conditions. Precipitation of inorganic carbon as calcite was associated with this community, representing up to 50% of the carbon sequestered into the sediment. The lower under-ice zone was characterized by a decline in pigment concentrations with depth and an increasing prevalence of diatoms. Photosynthesis in this community was highly shade acclimated and efficient, with Ec and Ek below 0.5 μmol·m−2·s−1 and 2 μmol·m−2·s−1, respectively, and maximum yields of 0.04 mol C fixed·mol−1 incident quanta. Carbon uptake in situ by both under-ice and moat mats was estimated at up to 100 and 140 mg·m−2·day−1, based on the photosynthesis–irradiance curves, incident irradiance, and light attenuation by ice and the water column.  相似文献   

17.
18.
Herein we report the use of Pseudomonas putida F1 biofilms grown on carbonized cellulosic fibers to achieve biodegradation of airborne volatile organic compounds (VOCs) in the absence of any bulk aqueous-phase media. It is believed that direct exposure of gaseous VOC substrates to biomass may eliminate aqueous-phase mass transfer resistance and facilitate VOC capture and degradation. When tested with toluene vapor as a model VOC, the supported biofilm could grow optimally at 300 p.p.m. toluene and 80% relative humidity, with a specific growth rate of 0.425 day−1. During long-term VOC biodegradation tests in a tubular packed bed reactor, biofilms achieved a toluene degradation rate of 2.5 mg gDCW−1 h−1 during the initial growth phase. Interestingly, the P. putida F1 film kept biodegrading activity even at the stationary nongrowth phase. The supported biofilms with a biomass loading of 20% (wt) could degrade toluene at a rate of 1.9 mg gDCW−1 h−1 during the stationary phase, releasing CO2 at a rate of 6.4 mg gDCW−1 h−1 at the same time (indicating 100% conversion of substrate carbon to CO2). All of these observations promised a new type of “dry” biofilm reactors for efficient degradation of toxic VOCs without involving a large amount of water.  相似文献   

19.
《Process Biochemistry》2007,42(4):693-699
The refining process of vegetable oils generates acidic wastewater with the following characteristics: pH (1–1.5), COD (10–30 g O2 L−1), suspended solids (7–12 g L−1) and fats (2–4 g L−1). In order to reduce the effluent load and recover a fraction of the fats without using any additives, a microfiltration (0.2–1.4 μm) process involving ceramic membranes at very low transmembrane pressure values (0.1–1 bar) was assessed. Four batches of acidic wastewater from different manufacturing runs were tested. Trials with a constant volumetric reduction ratio of 30 were carried out for periods of more than 5 h. With a 0.5 μm membrane it was possible to maintain a permeate flux of 100 L h−1 m−2 for 24 h and achieve a 91% reduction in SS, a 96% reduction in fat and a COD reduction of more than 60%. In addition, the retentate thus extracted separated spontaneously into two phases, both of which could be exploited: the upper phase mainly consisting of fats as a by-product and the lower clarified phase which could be mixed into the permeate.  相似文献   

20.
In this study, secondary brewery wastewater (SBWW) supplemented with sugarcane molasses (SCM) was used for SBWW treatment with concomitant lipid and carotenoid production by the yeast Rhodosporidium toruloides NCYC 921. In order to improve the biomass production, ammonium sulfate, yeast extract and urea were tested as nitrogen sources. Urea was chosen as the best low-cost nitrogen source. A fed-batch cultivation was carried out with SBWW supplemented with 10 g L−1 of sugarcane molasses as carbon source, and 2 g L−1 of urea as nitrogen source. A maximum biomass concentration of 42.5 g L−1 was obtained at t = 126.5 h and the maximum biomass productivity was 0.55 g L−1 h−1 at t = 48.25 h. The maximum lipid content was 29.9 % w/w (DCW) at t = 94 h of cultivation and the maximum carotenoid content was 0.23 mg g−1 at 120 h of cultivation. Relatively to the SBWW treatment, after the batch phase, 45.8 % of total Kjeldahl nitrogen removal, 81.7 % of COD removal and 100 % of sugar consumption were observed. Flow cytometry analysis revealed that 27.27 % of the cells had injured membrane after the inoculation. This proportion was reduced to 10.37 % at the end of the cultivation, indicating that cells adapted to the growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号