首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chick-embryo cartilage contains a unique set of proteoglycans. Type H proteoglycan (PG-H) is the most abundant, constituting over 90% of the total cartilage hexuronate. We previously showed that treatment of PG-H with chondroitinase ACII and keratanase yields a protein-enriched core molecule [PG(-CS,KS)] with enzymically modified linkage oligosaccharides of the chondroitin sulphate and keratan sulphate chains. We report here that further treatment of PG(-CS,KS) with pepsin and N-oligosaccharide glycopeptidase (almond glycopeptidase) released four distinct types of mannose-containing oligosaccharide. Two of them were shown to be: (Formula: see text). Of the mannose-containing glycopeptides formed by pepsin digestion, about 40% (as mannose) were resistant to N-oligosaccharide glycopeptidase. Since the resistant fraction was enriched in keratan sulphate remnants, it is suggest that the mannose-containing oligosaccharides in this fraction represent those located in a keratan sulphate-enriched region of PG-H.  相似文献   

2.
Newly synthesized and endogenous proteoglycan was isolated from human femoral head osteochondrophytic spurs. 35SO4-containing keratan sulphate was measured by its susceptibility to endo-beta-D-galactosidase (keratanase) and comprised 15-17% of the two subpopulations of a proteoglycan monomer fraction (D1) resolved by Sepharose CL-2B chromatography (Kav (I), 0.22; (II), 0.78). The size of the newly synthesized keratan sulphate in these fractions was large (Mr greater than 7,000). The hydroxylamine cleavage product of a proteoglycan aggregate fraction (A1) which eluted in the void volume of a Sepharose CL-2B column was immunoreactive with an anti-keratan sulphate monoclonal antibody, 5-D-4. Unlike the proteoglycan aggregate A1 fraction from bovine nasal cartilage, immunoreactivity against 5-D-4 was also found in chromatographic fractions retarded by Sepharose CL-2B. These results lend additional support to our assertion that the osteophyte extracellular matrix consists of hyaline cartilage-type proteoglycan. Stimulation of osteophyte proliferation may be useful as a repair mechanism for resurfacing denuded areas of osteoarthritic femoral heads.  相似文献   

3.
Peptides were derived from the large chondroitin sulfate proteoglycan from chick cartilage by clostripain digestion. Using differential chondroitinase ABC and keratanase treatment and direct carbohydrate analysis, three major peptides of 86, 75, and 27 kDa were shown to bear only chondroitin sulfate chains. Another major peptide of 65 kDa was shown to contain both chondroitin sulfate and keratan sulfate chains, allowing it to be separated from the peptides derived from the chondroitin sulfate domain by DEAE-cellulose chromatography. An additional new peptide (100 kDa) containing keratan sulfate chains was found only in clostripain digests of proteoglycan-hyaluronate-link protein aggregates. Unlike any of the other peptides derived from clostripain digestion of proteoglycan monomer or aggregate, this peptide had the properties of a functional hyaluronate binding region. All of these peptides were purified to apparent homogeneity by preparative electroelution from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and deglycosylated with anhydrous hydrogen fluoride. Automated Edman degradation of the two largest chondroitin sulfate peptides revealed that they had unique N termini and several unrecognized residues, which were all subsequently revealed to be modified serine residues following deglycosylation. The keratan sulfate-bearing peptide also had a unique N terminus, which contained a single unrecognized residue, even after HF deglycosylation. Finally, the N terminus of the hyaluronate binding region was blocked. These studies allow estimates of core peptide masses in the absence of carbohydrate as well as provide primary amino acid sequence for O-xylosylated serine residues in the multiply substituted proteoglycans.  相似文献   

4.
Peptido-keratan sulphate fragments were isolated from the nucleus pulposus of bovine intervertebral discs (6-year-old animals) after chondroitin ABC lyase digestion followed by digestion of A1D1 proteoglycans by diphenylcarbamoyl chloride-treated trypsin and gel-permeation chromatography on Sepharose CL-6B. Treatment of these peptido-keratan sulphate fragments with alkaline NaB3H4 yielded keratan sulphate chains with [3H]galactosaminitol end-labels, and these chains were further purified by gel-permeation chromatography on Sephadex G-50 and ion-exchange chromatography on a Pharmacia Mono-Q column in order to exclude any contamination with O-linked oligosaccharides. The chains were then treated with keratanase, and the digest was chromatographed on a Bio-Gel P-4 column followed by anion-exchange chromatography on a Nucleosil 5 SB column. Two oligosaccharides, each representing 18% of the recovered radiolabel, were examined by 500 MHz 1H-n.m.r. spectroscopy, and shown to have the following structures: [formula: see text] The structure of oligosaccharide (I) confirms the N-acetylneuraminylgalactose substitution at position 3 of N-acetylgalactosamine in the keratan sulphate-protein linkage region found by Hopwood & Robinson [(1974) Biochem. J. 141, 57-69] but additionally shows the presence of a 6-sulphated N-acetylglucosamine. Electron micro-probe analysis specifically confirmed the presence of sulphur in this sample. This sulphate ester group differentiates the keratan sulphate linkage region from similar structures derived from O-linked oligosaccharides [Lohmander, De Luca, Nilsson, Hascall, Caputo, Kimura & Heinegård (1980) J. Biol. Chem. 255, 6084-6091].  相似文献   

5.
A mouse monoclonal antibody (AN9P1) to keratan sulphate is described. In a competitive-inhibition solution-phase radioimmunoassay employing 125I-labelled intact proteoglycan, it reacts preferentially with keratan sulphate bound to the core protein of adult human articular-cartilage proteoglycan and to a much lesser degree with keratan sulphate purified from this proteoglycan. Proteolytic cleavage of the proteoglycan by pepsin and trypsin has little effect on antibody binding, but treatment with papain decreases binding considerably and more than does treatment with keratanase. An even greater decrease in binding is observed after treatment with alkaline borohydride. A comparison of binding of antibody AN9P1 with that of another previously described monoclonal antibody, 1/20/5-D-4, to keratan sulphate [Caterson, Christner & Baker (1983) J. Biol. Chem. 258, 8848-8854] revealed similar binding characteristics, both showing much diminished binding after papain digestion of proteoglycan and even less with purified skeletal keratan sulphate. Removal of the Fc piece of antibody AN9P1 had no significant effect on the differential binding of divalent F(ab')2 fragment to proteoglycan, to papain-digested proteoglycan and to keratan sulphate, although there was a small decrease in binding to papain-digested proteoglycan. Conversion of the antibody into univalent Fab fragment with removal of the Fc piece resulted in diminished binding to proteoglycan, compared with that observed with IgG, and in enhanced binding to free keratan sulphate and to papain-digested proteoglycan. These results suggest that close proximity of keratan sulphate chains on the core protein of proteoglycans favours preferential reactivity of bivalent antibody with these species through cross-bridging of chains by antibody. Conversely, much decreased binding to keratan sulphate on proteoglycan core-protein fragments and to free keratan sulphate results from a lack of close proximity of keratan sulphate. By using univalent Fab fragment in these assays these differences in binding are minimized by preventing cross-bridging and thereby enhancing detection of smaller fragments without sacrificing too much sensitivity of detection of larger proteoglycan species. The persistent preferential binding of Fab fragment to proteoglycan is probably in part the result of the increased epitope density in the intact molecule compared with keratan sulphate in a more disperse form.  相似文献   

6.
The small keratan sulphate proteoglycan, fibromodulin, has been isolated from pooled human articular cartilage. The main chain repeat region and the chain caps from the attached N-linked keratan sulphate chains have been fragmented by keratanase II digestion, and the oligosaccharides generated have been reduced and isolated. Their structures and abundance have been determined by high pH anion-exchange chromatography. These regions of the keratan sulphate from human articular cartilage fibromodulin have been found to have the following general structure: Significantly, both α(2-6)- and α(2-3)-linked N-acetyl-neuraminic acid have been found in the capping oligosaccharides. Fucose, which is α(1-3)-linked as a branch to N-acetylglucosamine, has also been found along the length of the repeat region and in the capping region. The chains, which have been found to be very highly sulphated, are short; the length of the repeat region and chain caps is ca. nine disaccharides. These data demonstrate that the structure of the N-linked keratan sulphate chains of human articular cartilage fibromodulin is similar, in general, to articular cartilage derived O-linked keratan sulphate chains. Further, the general structure of the keratan sulphate chains attached to human articular cartilage fibromodulin has been found to be generally similar to that of both bovine and equine articular cartilage fibromodulin. Abbreviations: KS, keratan sulphate; IEC, ion-exchange chromatography; ELISA, enzyme linked immunosorbent assay; Gal, β-D-galactose; Fuc, α-L-Fucose; GlcNAc, N-acetylglucosamine (2-acetamido-β-D-glucose); GlcNAc-ol, N-acetylglucosaminitol (2-acetamido-D-glucitol); NeuAc, N-acetyl-neuraminic acid; 6S/(6S), O-ester sulphate group on C6 present/sometimes present; NMR -nuclear magnetic resonance; HPAE, high pH anion-exchange; PED, pulsed electrochemical detection; HPLC, high performance liquid chromatography This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

7.
Proteoglycans isolated under associative conditions in the presence of protease inhibitors from human nucleus pulposus contained 17% aggregate and 83% non-aggregating monomer (Kav = 0.5 on Sepharose CL-2B). Isolated aggregate after reduction and alkylation was resolved into two components (Kav = 0.15 and 0.43) on Sepharose CL-2B. Labeled proteoglycans isolated from parallel samples pulsed with [35S]sulfate and chased for up to 18 h were present largely as aggregated material (up to 78%). Reduction and alkylation of the labeled samples gave a labeled proteoglycan monomer with Kav = 0.15. Both the labeled and unlabeled chondroitin sulfate chains had the same distribution on Sepharose CL-6B and equivalent molecular weights (Mr = 2.0 x 10(3)). After chondroitinase ABC digestion, the unlabeled keratan sulfate-protein core was polydisperse with a Kav = 0.38 on Sepharose CL-4B while the labeled keratan sulfate-protein core had a Kav = 0.05. This indicates that the newly synthesized proteoglycan had a large core protein and suggests that the proteoglycans present in nucleus pulposus are originally synthesized as large molecular weight, aggregating proteoglycans.  相似文献   

8.
Binding region and link protein were prepared from pig laryngeal cartilage proteoglycans after chondroitinase ABC and trypsin digestion. Experiments on gel chromatography showed the purified binding region to interact reversibly with hyaluronate (HA), and this binding was also shown to be stabilized by native link protein. The trypsin-prepared link protein showed properties of self-association in solution that were partially inhibited by oligosaccharides (HA10-16) and abolished by modification of free amino groups (lysine residues) with 2-methylmaleic anhydride. The Mr (sedimentation equilibrium) of the modified link protein was 41 700. Analysis of binding region showed it to contain 25% (w/w) carbohydrate, mainly in galactose, glucosamine, mannose and galactosamine. It contained some keratan sulphate, as digestion with endo-beta-D-galactosidase (keratanase) removed 28% galactose and 25% glucosamine and the Mr (sedimentation equilibrium) decreased from 66 500 to 60 800. After keratanase digestion the interaction with polyclonal antibodies specific for binding region was unaffected, but the response in a radioimmunoassay with a monoclonal antibody to keratan sulphate was decreased by 47%. Preparation of a complex between binding region, link protein and HA approximately 34 showed a single component (5.5S) of Mr (sedimentation equilibrium) 133 500. In this complex the antigenic determinants of link protein appeared masked, as previously found with proteoglycan aggregates. The isolated binding region and link protein were thus shown to retain properties comparable with those involved in the structure and organization of proteoglycan aggregates.  相似文献   

9.
Fractionation of proteoglycans from bovine corneal stroma.   总被引:4,自引:0,他引:4       下载免费PDF全文
Proteoglycans were extracted from bovine corneal stroma with 4M-guanidinum chloride, purified by DEAE-dellulose chromatography (Antonopoulos et al., 1974) and fractionated by precipitation with ethanol into three fractions of approximately equal weight. One of these fractions consisted of a proteoglycan that contained keratan sulphate as the only glycosaminoglycan. In the othertwo fractions proteoglycans that contained chondroitin sulphate, dermatan sulphate and keratan sulphate were present. Proteoglycans which had a more than tenfold excess of galactosaminoglycans over keratan sulphate could be obtianed by further subfractionation. The gel-chromatographic patterns of the glucosaminoglycans before and after digestion with chondroitinase AC differed for the fractions. The individual chondroitin sulphate chains seemed to be larger in cornea than in cartilage. Oligosaccharides, possibly covalently linked to the protein core of the proteoglycans, could be isolated from all fractions. The corneal proteoglycans were shown to have higher protein contents and to be of smaller molecular size than cartilage proteoglycans.  相似文献   

10.
Biosynthetically radiolabelled heparan sulphate proteoglycans have been isolated from the growth medium and the cell lysate of a human neuroblastoma cell line (CHP100). Chromatography on Sepharose CL-4B identified two heparan sulphate proteoglycans in the medium (Kav 0.220 and 0.3890, whereas in the cell lysate the major proteoglycan species were more heterogenous and of a smaller overall molecular size (Kav 0.407) than the medium-derived counterparts. Chromatography on Sepharose CL-6B of free heparan sulphate glycosaminoglycan chains showed that the majority of cell-layer-derived material heparan sulphate 2, Kav=0.509) was smaller than medium heparan sulphates (heparan sulphate 1 and heparan sulphate 2, Kav 0.230 and 0.317). Analysis of the patterns of polymer sulphation by nitrous acid treatment, gel chromatography and high-voltage electrophoresis established that in each heparan sulphate fraction there was on average 1.1 sulphate residues per disaccharide with an N:O sulphate ratio of 1.1 Heparan sulphate in the medium had a high proportion of di-O-sulphated disaccharides in regions of the chain with repeat disaccharide sequences of structure GlcA-GlcNSO3, whereas cell-associated material was enriched in di-O-sulphated tetrasaccharides of alternating sequences GlcA-GlcNAc-GlcA-GlcNSO3. The identification of several populations of heparan sulphate proteoglycans differing in molecular size and glycosaminoglycan fine structure may reflect the functional diversity of this family of macromolecules in the nervous system.  相似文献   

11.
Keratan sulfate-rich peptides were isolated after digestion of proteoglycans from bovine nasal cartilage and bovine nucleus pulposus with chondroitinase ABC, trypsin and chymotrypsin. The keratan sulfate enriched peptides from nucleus pulposus were larger than those from nasal cartilage. Keratan sulfate chains were isolated after treatment of the keratan sulfate-rich peptides under alkaline, reductive conditions. Proteoglycans from nucleus pulposus contain longer keratan sulfate chains, as is shown primarily by gel chromatography of the keratan sulfate-rich peptides and the keratan sulfate chains, but also from end-group analyses of the keratan sulfate chains.  相似文献   

12.
Radioisotopically labeled proteoglycans were isolated from a 4 M guanidine HCl, 2% Triton X-100 extract of corneal stroma from day 18 chicken embryos by anion-exchange chromatography. Two predominant proteoglycans in the sample were separated by octyl-Sepharose chromatography using a gradient elution of detergent in 4 M guanidine HCl. One proteoglycan had an overall mass of approximately 125 kDa, a single dermatan sulfate chain (approximately 85-90% chondroitin 4-sulfate, low iduronate content) of approximately 65 kDa, and a core protein after chondroitinase ABC digestion of approximately 45 kDa which also contained one to three N-linked oligosaccharides and one O-linked oligosaccharide. The other proteoglycan had an overall size of approximately 100 kDa, two to three keratan sulfate chains of approximately 15 kDa each, and a core protein following keratanase digestion of approximately 51 kDa which included two to three N-linked but no O-linked oligosaccharides. A larger size, a greater overall hydrophobicity (as measured by its interaction with octyl-Sepharose) and an absence of O-linked oligosaccharides argue that this core protein is a distinct gene product from the core protein of the dermatan sulfate proteoglycan.  相似文献   

13.
The proteoglycans extracted from adult chicken were initially purified by DEAE-chromatography. Digestion of these proteoglycans with chondroitinase ABC generated a single 40-kDa core protein while digestion with keratanase generated a single 52-kDa core protein. Digestion with both enzymes combined, however, increased the amount of 40-kDa core protein produced. This suggested that the 40-kDa core protein exists with chondroitin/dermatan sulfate (C/DS) side chains alone and with both C/DS and keratan sulfate (KS) side chains. The proteoglycan fraction was initially digested with chondroitinase ABC, and the M(r) = 40,000 core protein derived from proteoglycans containing C/DS side chains alone was isolated. Amino-terminal sequencing showed it to be the chick cognate of decorin. The remaining proteoglycans were then digested with keratanase, and both the 40-kDa core protein and the 52-kDa core proteins derived from KS-containing proteoglycans were purified. The M(r) = 40,000 core protein derived from proteoglycans containing both C/DS and KS side chains had the same amino-terminal sequence as decorin and cross-reacted with antibodies to decorin. Sequence from the 52-kDa core protein derived from KS-containing proteoglycans showed it to be lumican. The results of this study suggest that adult chick corneas contain two isoforms of decorin: one containing C/DS side chains and the other, a hybrid, containing both C/DS and KS side chains. Embryonic corneas did not contain the hybrid isoform of decorin. These results suggest that different post-translational modifications occur to the decorin gene product during corneal development and maturation.  相似文献   

14.
Knox S  Fosang AJ  Last K  Melrose J  Whitelock J 《FEBS letters》2005,579(22):5019-5023
Perlecan is a multidomain proteoglycan, usually substituted with heparan sulphate (HS), and sometimes substituted with both HS and chondroitin sulphate (CS). In this paper, we describe perlecan purified from HEK-293 cells substituted with HS, CS and keratan sulphate (KS). KS substitution was confirmed by immunoreactivity with antibody 5D4, sensitivity to keratanase treatment, and fluorophore-assisted carbohydrate electrophoresis. HEK-293 perlecan failed to promote FGF-dependent cell growth in an in vitro assay. This study is the first to report perlecan containing KS, and makes perlecan one of only a very few proteoglycans substituted with three distinct types of glycosaminoglycan chains.  相似文献   

15.
After chondroitinase digestion of bovine nasal and tracheal cartilage proteoglycans, subsequent treatment with trypsin or trypsin followed by chymotrypsin yielded two major types of polypeptide-glycosaminoglycan fragments which could be separated by Sepharose 6B chromatography. One fragment, located close to the hyaluronic acid-binding region of the protein core, had a high relative keratan sulfate content. This fragment contained about 60% of the total keratan sulfate, but less than 10% of the total chondroitin sulfate present in the original proteoglycan preparation. The weight average molecular weight of the keratan sulfate-enriched fragment was 122,000, as determined by sedimentation equilibrium centrifugation. The chemical and physical data indicate that this fragment contains an average of 10 to 15 keratan sulfate chains, if the average molecular weight of individual chains is assumed to be about 8,000, and about 5 chondroitin sulfate chains attached to a peptide of about 20,000 daltons. The other population of fragments was derived from the other end of the proteoglycan molecule, the chondroitin sulfate-enriched region, and contained mainly chondroitin sulfate chains. About 90% of the total chondroitin sulfate, but only 20 to 30% of the total keratan sulfate was recovered in these fragments. On the average, approximately 5 chondroitin sulfate chains and 1 keratan sulfate chain could be linked to the same peptide. Another 10 to 20% of the total keratan sulfate, originally found in or near the hyaluronic acid-binding region, was not separated from the chondroitin sulfate-enriched fragments. Hydroxylamine could be used to liberate a large molecular size, chondroitin sulfate-enriched fragment (Kav 0.54 on Sepharose 2B) from the proteoglycan aggregates. The remainder of the protein core, containing the keratan sulfate-enriched region, was bound to hyaluronic acid with the link proteins and recovered in the void volume on the Sepharose 2B column.  相似文献   

16.
Digestion of chick-embryo cartilage proteoglycan (type H) with chondroitin AC II lyase or keratanase, in the presence of EDTA, N-ethylmaleimide, phenylmethanesulphonyl fluoride and pepstatin, resulted in the removal of the bulk of the chondroitin sulphate or keratan sulphate chains respectively, without altering the protein portion of the macromolecule. An exhaustive treatment of the proteoglycan with chondroitin AC II lyase followed by digestion with keratanase yielded a core fraction having the enzymically modified linkage oligosaccharides. Zonal sedimentation of this core preparation on a sucrose gradient in 0.5% SDS resulted in a single narrow band with a sedimentation coefficient of 6S. In 4 M-guanidinium chloride, the core preparation showed a tendency to aggregate to multiple-molecular-weight forms which could dissociate in the presence of Triton X-100. The results indicate that the preponderance of glycosaminoglycans in the proteoglycan molecule is a main reason for both polydispersity and hydrophilicity of the proteoglycan preparation, and further suggest that the enzymic procedures could prove useful as a method to obtain new information about the structure and properties of proteoglycan core molecules.  相似文献   

17.
Rabbit annulus fibrosus and nucleus pulposus were analysed for hydroxyproline, chondroitin sulphate, keratan sulphate and dermatan sulphate. Tissue proteoglycans were stained for electron microscopy with Cupromeronic blue, used in the critical electrolyte concentration mode, with and without prior digestion by chondroitinase AC or ABC, hyaluronidase or keratanase. Collagen bands, a-e were demonstrated with UO2++. A chondroitin sulphate proteoglycan was found orthogonally associated with loosely packed collagen fibrils in annulus fibrosus at the d and e bands. The close metabolic and structural analogies with the dermatan sulphate proteoglycans previously shown to be located at collagen d-e bands in tendon, skin, etc. (Scott and Haigh (1985) Biosci. Rep. 5:71-81), are discussed. Tightly packed annulus collagen fibrils were surrounded by axially oriented proteoglycan filaments, mostly without specific locations.  相似文献   

18.
The proteoglycans of the canine intervertebral disc   总被引:3,自引:0,他引:3  
The high-buoyant-density proteoglycans of the nucleus pulposus and annulus fibrosus of the beagle intervertebral disc have been isolated by CsCl density gradient ultracentrifugation. The sulphated proteoglycans were labelled in vivo with 35SO4, 24 h and 60 days prior to killing. The hydrodynamic size and aggregation of the 24 h, 60 day and resident (from hexuronic acid and hexosamine analysis) proteoglycan subunit populations were determined by Sepharose CL-2B chromatography in the presence or absence of excess hyaluronic acid. The hydrodynamic size of the keratan sulphate-proteoglycan core protein complexes were also determined by Sepharose CL-2B chromatography after chondroitinase ABC digestion of proteoglycans. When initially synthesised (24 h) or after 60 days, the percentage aggregation and hydrodynamic size of the proteoglycans derived from the annulus fibrosus were larger than those present in the nucleus pulposus. Hexosamine, hexuronic and protein determination of the high-buoyant-density fractions showed that the proteoglycans of the nucleus pulposus were richer in chondroitin sulphate than those in the annulus. However there was no difference in Mr of the chondroitin sulphate and keratan sulphate attached to the proteoglycans of the two disc regions, nor were differences detected by HPLC between the proportions of chondroitin 4-sulphate and chondroitin 6-sulphate present in these high-density fractions. In contrast, the low-buoyant-density (1.54 greater than p greater than 1.45) proteoglycan fractions and tissue residues remaining after 4 M GuHCl extraction were found to contain dermatan sulphate, suggesting the presence of a third proteoglycan species possibly associated with the collagen of the fibrocartilagenous matrix.  相似文献   

19.
Highly sulphated keratan di- and tetrasaccharides were prepared from keratan sulphate (KS) of shark cartilage by enzymatic digestion with keratanase II and subsequent chromatography. The tetrasaccharide fraction carrying four sulphate groups was completely desulphated by 100 mM anhydromethanolic hydrochloric acid (MeOH-HCl) treatment at room temperature for 16 h. The conditions for the desulphation reaction by MeOH-HCl treatment were examined using sulphated keratan di- and tetrasaccharides as substrates by means of reversed phase high performance liquid chromatography (HPLC) and/or capillary electrophoresis, followed by the preparation of partially desulphated keratan oligosaccharides. Sulphate substitution patterns of monosulphated keratan disaccharide and trisulphated keratan tetrasaccharide were evaluated by methylation analysis. The results suggested that 6-O-sulphate groups of Gal moieties are cleaved faster than those of GlcNAc moieties under the present conditions adopted for the MeOH-HCl treatment of KS-derived oligosaccharides.  相似文献   

20.
Newly synthesized 35S-labeled chondrocytic keratan sulfate chains were generated by chondrocytes of human chondrosarcoma cell line 105KC and were analyzed for heterogeneity of regional substitution, hydrodynamic size, and charge density. After isolation of the high density large chondrocytic proteoglycans and sequential digestions with chondroitinase ABC, L-1-tosylamido-2-phenylethyl chloromethyl ketone-treated trypsin, and alpha-chymotrypsin, followed by Superose 6 chromatography, two populations of keratan sulfate-containing proteoglycan fragments were identified and pooled separately. Keratan sulfate chains from each of the regions were compared after release by Pronase digestion, and differences in substitution patterns were observed; keratan sulfate chains of greater polydispersity, as well as a population of larger hydrodynamic size, were present in only one of the two regions. Alkaline/borohydride treatment confirmed both the existence of a population of uniquely large keratan sulfate chains and its restriction to a single region of proteoglycan fragments. In addition to heterogeneity of hydrodynamic size, the keratan sulfate chains exhibited regional heterogeneity of charge density and hence, of sulfation patterns. Analysis by Mono Q chromatography identified distinct groups of keratan sulfate that segregated by charge density and whose proportionate composition differed between the proteoglycan regions. Furthermore, the most highly charged species were unique to a single region and encompassed the chains of larger hydrodynamic size. This suggests that there may be regional heterogeneity of keratan sulfate chains substituted along a single class of proteoglycans and identifies a novel population of large, highly sulfated chondrocytic keratan sulfate chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号