首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The shear-induced intracellular signal transduction pathway invascular endothelial cells involves tyrosine phosphorylation andactivation of mitogen-activated protein (MAP) kinase, which may beresponsible for the sustained release of nitric oxide. MAP kinase isknown to be activated by reactive oxygen species (ROS), such asH2O2,in several cell types. ROS production in ligand-stimulatednonphagocytic cells appears to require the participation of aRas-related small GTP-binding protein, Rac1. We hypothesized that Rac1might serve as a mediator for the effect of shear stress on MAP kinaseactivation. Exposure of bovine aortic endothelial cells to laminarshear stress of 20 dyn/cm2 for5-30 min stimulated total cellular and cytosolic tyrosine phosphorylation as well as tyrosine phosphorylation of MAP kinase. Treating endothelial cells with the antioxidantsN-acetylcysteine and pyrrolidinedithiocarbamate inhibited in a dose-dependent manner theshear-stimulated increase in total cytosolic and, specifically, MAPkinase tyrosine phosphorylation. Hence, the onset of shear stresscaused an enhanced generation of intracellular ROS, as evidenced by anoxidized protein detection kit, which were required for theshear-induced total cellular and MAP kinase tyrosine phosphorylation. Total cellular and MAP kinase tyrosine phosphorylation was completely blocked in sheared bovine aortic endothelial cells expressing adominant negative Rac1 gene product (N17rac1). We concluded that theGTPase Rac1 mediates the shear-induced tyrosine phosphorylation of MAPkinase via regulation of the flow-dependent redox changes inendothelial cells in physiological and pathological circumstances.  相似文献   

2.
Journal of Plankton Research, 11, 1273–1295, 1989. The values of P/U0 (Table I) and fluid velocity used to calculatethe energy required for sieving (pp. 1289–1290) and severalequations (footnote b of Table I; p. 1290, lines 3–4)are incorrect. The corrected table appears below: Table I. Filter setule measurements (mean and within specimenstandard deviation) of the gnathobases for the cladocerans studiedaGnathobaseof trunklimb number. bP = 8µU0/(b(1 – 21nt + 1/6(t2) - 1/144(t4))), whereP = pressure drop in dyn cm–2, =3.1416, U0 = fluid velocityin cm s–1, b = distance between setule centres in cm,t = ( x setule diameter)/b and µ = 0.0101 dyn s–1cm–2. Formula from Jørgensen (1983). The text (p. 1289, line 19 to p. 1290, line 10) should read: organism. Using a similar argument, a 0.5 mm Ceriodaphnia witha filter area of 0.025 mm2 (Ganf and Shiel, 1985) and pressuredrop P = 2757 dyn cm–2 (with fluid velocity of 0.07 cms–1) allocates only 2171 ergs h–1 to filtrationof a total energy expenditure of 104 ergs h–1 [filtrationenergy (ergs h–1) = area (cm2) x pressure drop (dyn cm–2)x 3600 (s h–1) x 1/0.2 (efficiency of conversion of biochemicalinto mechanical work); total energy (ergs h–1) = respiration(0.05 µl O2 ind–1 h–1 consumed; Gophen, 1976)x conversion factor (2 x 105 ergs µl–1 O2). Withan estimated 0.034 mm2 in filter area, fluid velocity of 0.041cm s–1 and respiration of 1.8 x 104 ergs h–1 (calculatedfrom Porter and McDonough, 1984), a 0.5 mm Bosmina uses <4%of its metabolism to overcome filter resistance. The velocities used in the original examples (0.4 cm s–1for Ceriodaphnia, 0.2 cm s–1 for Bosmina) were derivedfrom literature values of appendage beat rate and estimatesof the distance travelled by the appendages during each beatcycle. This approach unnecessarily assumes that all water movedpasses through the filter. In the new calculations, the flowacross the filter needed for food to be collected by sieving(0.07 cm s–1 for Ceriodaphnia and 0.041 cm s–1 forBosmina) was determined from the maximum clearance rate/filterarea. The amended energy expenditures, although higher, do notrefute the sieve model of particle collection.  相似文献   

3.
Atherosclerotic plaques can lead to partial vascular occlusions that produce abnormally high levels of arterial wall shear stress. Such pathophysiological shear stress can promote shear-induced platelet aggregation (SIPA), which has been linked to acute myocardial infarction, unstable angina, and stroke. This study investigated the role of the tyrosine kinase Syk in shear-induced human platelet signaling. The extent of Syk tyrosine phosphorylation induced by pathophysiological levels of shear stress (100 dyn/cm2) was significantly greater than that resulting from physiological shear stress (10 dyn/cm2). With the use of phospho-Syk specific antibodies, these data are the first to show that key regulatory sites of Syk at tyrosines 525/526 (Y525/526) and tyrosine 352 (Y352) were phosphorylated in response to pathophysiological shear stress. Increased phosphorylation at both sites was attenuated by pharmacological inhibition of Syk using two different Syk inhibitors, piceatannol and 3-(1-methyl-1H-indol-3-yl-methylene)-2-oxo-2,3-dihydro-1H-indole-5-sulfonamide (OXSI-2), and by inhibition of upstream Src-family kinases (SFKs). Shear-induced response at the Syk 525/526 site was ADP dependent but not contingent on glycoprotein (GP) IIb-IIIa ligation or the generation of thromboxane (Tx) A2. Pretreatment with Syk inhibitors not only reduced SIPA and Syk phosphorylation in isolated platelets, but also diminished, up to 50%, the platelet-mediated thrombus formation when whole blood was perfused over type-III collagen. In summary, this study demonstrated that Syk is a key molecule in both SIPA and thrombus formation under flow. Pharmacological regulation of Syk may prove efficacious in treating occlusive vascular disease. GPIb; GPIIb-IIIa; signal transduction; thrombosis; collagen  相似文献   

4.
Control of neutrophil pseudopods by fluid shear: role of Rho family GTPases   总被引:1,自引:0,他引:1  
Blood vessels and blood cells are under continuous fluid shear. Studies on vascular endothelium and smooth muscle cells have shown the importance of this mechanical stress in cell signal transduction, gene expression, vascular remodeling, and cell survival. However, in circulating leukocytes, shear-induced signal transduction has not been investigated. Here we examine in vivo and in vitro the control of pseudopods in leukocytes under the influence of fluid shear stress and the role of the Rho family small GTPases. We used a combination of HL-60 cells differentiated into neutrophils (1.4% dimethyl sulfoxide for 5 days) and fresh leukocytes from Rac knockout mice. The cells responded to shear stress (5 dyn/cm2) with retraction of pseudopods and reduction of their projected cell area. The Rac1 and Rac2 activities were decreased by fluid shear in a time- and magnitude-dependent manner, whereas the Cdc42 activity remained unchanged (up to 5 dyn/cm2). The Rho activity was transiently increased and recovered to static levels after 10 min of shear exposure (5 dyn/cm2). Inhibition of either Rac1 or Rac2 slightly but significantly diminished the fluid shear response. Transfection with Rac1-positive mutant enhanced the pseudopod formation during shear. Leukocytes from Rac1-null and Rac2-null mice had an ability to form pseudopods in response to platelet-activating factor but did not respond to fluid shear in vitro. Leukocytes in wild-type mice retracted pseudopods after physiological shear exposure, whereas cells in Rac1-null mice showed no retraction during equal shear. On leukocytes from Rac2-null mice, however, fluid shear exerted a biphasic effect. Leukocytes with extended pseudopods slightly decreased in length, whereas initially round cells increased in length after shear application. The disruption of Rac activity made leukocytes nonresponsive to fluid shear, induced cell adhesion and microvascular stasis, and decreased microvascular density. These results suggest that deactivation of Rac activity by fluid shear plays an important role in stable circulation of leukocytes. microcirculation; mechanotransduction; actin polymerization; transgenic mouse; leukocyte  相似文献   

5.
Hydraulic and osmotic properties of spruce roots   总被引:9,自引:6,他引:3  
Hydraulic and osmotic properties of roots of 2-year-old Norwayspruce seedlings (Plcea abiea (L.) Karst) were investigatedusing different techniques (steady flow, pressure probe, andstop flow technique). Root pressures were measured using theroot pressure probe. Compared to roots of herbaceous plantsor deciduous trees, excised root systems of spruce did not developappreciable root pressure (-0.001 to 0.004 MPa or -10 to 40cm of water column). When hydrostatic pressure gradients wereused to drive water flows across the roots, hydraulic conductivities(Lpr) were determined in two types of experiments: (i) rootpressure relaxations (using the root pressure probe) and (ii)steady flow experiments (pneumatic pressures applied to theroot system or xylem or partial vacuum applied to the xylem).Root Lpr ranged between 0.2 and 810–8m s–1 MPa–1(on average) depending on the conditions. In steady flow experiments,Lpr depended on the pressure applied (or on the flow acrossthe roots) and equalled (0.190.12) to (1.21.7)10–8m s–1 MPa–1 at pressures between 0.2 and 0.4 MPaand (1.51.3)10–8 m s–1 MPa–1 at appliedpressures between 0.8 and 1.0 MPa. When pressures or vacuumwere applied to the xylem, Lpr values were similar. The hydraulicconductivity measured during pressure relaxations (transientwater flows) was similar to that obtained at high pressures(and water flows). Although there was a considerable scatterin the data, there was a tendency of the hydraulic conductivityof the roots to decrease with increasing size of the root system.When osmotic gradients were used to drive water flows, Lpr valuesobtained with the root pressure probe were much smaller thanthose measured in the presence of hydrostatic gradients. Onaverage, a root Lpr=0.01710–8 was found for osmotic andLpr=6.410–8 m s–1 MPa–1 in correspondinghydrostatic experiments, i.e. the two values differed by a factorwhich was as large as 380. The same hydraulic conductivity asthat obtained in osmotic experiments using the pressure probewas obtained by the 'stop flow techniquel. In this technique,the suction created by an osmoticum applied to the root wasbalanced by a vacuum applied to the xylem. Lpr values of rootsystems did not change significantly when measured for up to5 d. In osmotic experiments with different solutes (Na2S04,K2S04, Ca(NO3)2, mannitol), no passive uptake of solutes couldbe detected, i.e. the solute permeability was very low whichwas different from earlier findings on roots of herbs. Reflectioncoefficients of spruce roots (O were low for solutes for whichplant cell membranes exhibit values of virtually unity (  相似文献   

6.
SYNOPSIS: At low temperature (2°C), in the absence of FDPand Mg2+, the enzyme fructose disphosphatase (FDPase), extractedfrom the liver of an off-shore benthic Coryphaenoides species,is inactivated by exposures to relatively low pressures. Thesubstrate, FDP, and the cofactor, Mg2+, protect against thisinactivation, so that catalysis per se is not retarded by pressure.In contrast, at alkaline pH, pressure dramatically acceleratesthe catalytic rate when FDP and Mg2+ are saturating. The volumechange of activation, V*, for Coryphaenoides FDPase under theseconditions is about –40 cm3/mole. At low concentrationsof FDP and saturating concentrations of cofactor, the reactionrate at alkaline pH is pressure-independent. Similarly, at lowconcentrations of Mg2+ but saturating concentration of FDP,the reaction rate is pressure-independent. The Km for FDP doesnot change measureably with pressure, while the Ka for Mg2+increases slightly with pressure. Under conditions of low (probablephysiological) FDP and Mg2+ concentrations, it is evident thatthe reaction rate is determined by the kinetic characteristicsof the enzyme and not by its energy-volume relationships, asituation which would appear to be of functional and selectivesignificance to an organism living under constantly high hydrostaticpressure. AMP is a potent specific inhibitor of CoryphaenoidesFDPase. The K4 for AMP is essentially pressure-independent bothat neutral and alkaline pH, suggesting that efficiency of AMPcontrol of this enzyme is comparable at all pressures likelyto be encountered in nature.  相似文献   

7.
Acute cessation of flow (ischemia) leads to depolarization of the endothelial cell (EC) membrane mediated by KATP channels and followed by production of reactive oxygen species (ROS) from NADPH oxidase. We postulated that ROS are a signal for initiating EC proliferation associated with the loss of shear stress. Flow cytometry was used to identify proliferating CD31-positive pulmonary microvascular endothelial cells (mPMVECs) from wild-type, Kir6.2–/–, and gp91phox–/– mice. mPMVECs were labeled with PKH26 and cultured in artificial capillaries for 72 h at 5 dyn/cm2 (flow adaptation), followed by 24 h of stop flow or continued flow. ROS production during the first hour of ischemia was markedly diminished compared with wild-type mice in both types of gene-targeted mPMVECs. Cell proliferation was defined as the proliferation index (PI). After 72 h of flow, >98% of PKH26-labeled wild-type mPMVECs were at a single peak (PI 1.0) and the proportion of cells in the S+G2/M phases were at 5.8% on the basis of cell cycle analysis. With ischemia (24 h), PI increased to 2.5 and the ratio of cells in S+G2/M phases were at 35%. Catalase, diphenyleneiodonium, and cromakalim markedly inhibited ROS production and cell proliferation in flow-adapted wild-type mPMVECs. Significant effects of ischemia were not observed in Kir6.2–/– and gp91phox–/– cells. ANG II activation of NADPH oxidase was unaffected by KATP gene deletion. Thus loss of shear stress in flow-adapted mPMVECs results in cell division associated with ROS generated by NADPH oxidase. This effect requires a functioning cell membrane KATP channel. cell signaling; ischemia; mechanotransduction; KATP channels; NADPH oxidase  相似文献   

8.
SYNOPSIS. At low temperature (3°C), in the absence of substrateand cofactor, trout liver fructose diphosphatase (FDPase) isinactivated by exposures to relatively low pressures. FDP andMg2+ protect against this inactivation; hence, maximum catalysisat pH 7.5 is pressure insensitive, while at more alkaline pH,it is markedly accelerated by pressure. The volume change ofactivation, V*, at saturating FDP and Mg2+ concentrations isabout –40 cm3/mole. The apparent Km for FDP and the Kafor Mg2+ are markedly increased by pressure. At low FDP or Mg2+levels these kinetic properties outweigh V* in determining thereaction rate; hence, under these conditions, piessure retardscatalysis. Similarly, the K4 for AMP is notably pressure sensitive.Comparable effects of pressure on the kinetic constants forliver FDPase from benthic Corypliaenoides are much less pronounced,suggesting that in these off-shore species enzyme-substrate,enzyme-cofactor, and enzyme-modulator interactions have beentailored through evolution for pressure independent catalyticfunction.  相似文献   

9.
This study examines whether fluid pressure (FP) modulates the L-type Ca2+ channel in cardiomyocytes and investigates the underlying cellular mechanism(s) involved. A flow of pressurized (16 dyn/cm2) fluid, identical to that bathing the myocytes, was applied onto single rat ventricular myocytes using a microperfusion method. The Ca2+ current (ICa) and cytosolic Ca2+ signals were measured using a whole cell patch-clamp and confocal imaging, respectively. It was found that the FP reversibly suppressed ICa (by 25%) without altering the current-voltage relationships, and it accelerated the inactivation of ICa. The level of ICa suppression by FP depended on the level and duration of pressure. The Ba2+ current through the Ca2+ channel was only slightly decreased by the FP (5%), suggesting an indirect inhibition of the Ca2+ channel during FP stimulation. The cytosolic Ca2+ transients and the basal Ca2+ in field-stimulated ventricular myocytes were significantly increased by the FP. The effects of the FP on the ICa and on the Ca2+ transient were resistant to the stretch-activated channel inhibitors, GsMTx-4 and streptomycin. Dialysis of myocytes with high concentrations of BAPTA, the Ca2+ buffer, eliminated the FP-induced acceleration of ICa inactivation and reduced the inhibitory effect of the FP on ICa by 80%. Ryanodine and thapsigargin, abolishing sarcoplasmic reticulum Ca2+ release, eliminated the accelerating effect of FP on the ICa inactivation, and they reduced the inhibitory effect of FP on the ICa. These results suggest that the fluid pressure indirectly suppresses the Ca2+ channel by enhancing the Ca2+-induced intracellular Ca2+ release in rat ventricular myocytes. L-type Ca2+ current; fluid pressure; ventricular myocytes; cytosolic Ca2+ transient  相似文献   

10.
The theory and practice of applying the thermodynamics of irreversibleprocesses to mass-flow theories is presented. Onsager coefficientswere measured on cut and uncut phloem and cut xylem strandsof Heracleum muntegazzimum. In 0.3 N sucrose + 1 mN KC1 theyare as follows. In phloem, LEE = 5 ? 10–4 mho cm–1,LpE = 9 ? 10–6 cm3 s–1 cm–2 volt–1 cm,and LPP = 0.16 cm3 s–1 cm–2 (J cm–3)–1cm. In uncut phloem strands LEE is about 1 ? 10–3 mhocm–1. In xylem in 2 x 10–3 N KCI, Lpp = 50 to 225,LPE = 2 ? 10–4, and LEE = 4 ? 10–3. The measurementsare tentative since the blockage of the sieve plates is an interferingfactor, but if they are valid they lead to the conclusion thatneither a pressure-flow nor an electro-kinetic mechanism envisaginga ‘long distance’ current pathway can be the majormotive ‘force’ for transport in mature phloem. Measurementsof biopotentials along conducting but laterally detached phloembundles of Heracleum suggest, nevertheless, that there may bea small electro-osmotic component of at least 0.1 mV cm–1endogenous in the phloem.  相似文献   

11.
The calcineurin-mediated signal transduction via nuclear factor of activated T cells (NFATc1) is involved in upregulating slow myosin heavy chain (MHC) gene expression during fast-to-slow transformation of skeletal muscle cells. This study aims to investigate the Ca2+ signal necessary to activate the calcineurin-NFATc1 cascade in skeletal muscle. Electrostimulation of primary myocytes from rabbit for 24 h induced a distinct fast-to-slow transformation at the MHC mRNA level and a full activation of the calcineurin-NFATc1 pathway, although resting Ca2+ concentration ([Ca2+]i) remained unaltered at 70 nM. During activation, the calcium transients of these myocytes reach a peak concentration of 500 nM. Although 70 nM [Ca2+]i does not activate calcineurin-NFAT, we show by the use of Ca2+ ionophore that the system is fully activated when [Ca2+]i is 150 nM in a sustained manner. We conclude that the calcineurin signal transduction pathway and the slow MHC gene in cultured skeletal muscle cells are activated by repetition of the rapid high-amplitude calcium transients that are associated with excitation-contraction coupling rather than by a sustained elevation of resting Ca2+ concentration. muscle plasticity; NFATc1; resting calcium concentration  相似文献   

12.
The key mechanism responsible formaintaining cell volume homeostasis is activation ofvolume-regulated anion current (VRAC). The role of hemodynamicshear stress in the regulation of VRAC in bovine aortic endothelialcells was investigated. We showed that acute changes in shear stresshave a biphasic effect on the development of VRAC. A shear stress stepfrom a background flow (0.1 dyn/cm2) to 1 dyn/cm2 enhanced VRAC activation induced by an osmoticchallenge. Flow alone, in the absence of osmotic stress, did not induceVRAC activation. Increasing the shear stress to 3 dyn/cm2,however, resulted in only a transient increase of VRAC activity followed by an inhibitory phase during which VRAC was gradually suppressed. When shear stress was increased further (5-10dyn/cm2), the current was immediately strongly suppressed.Suppression of VRAC was observed both in cells challenged osmoticallyand in cells that developed spontaneous VRAC under isotonic conditions. Our findings suggest that shear stress is an important factor inregulating the ability of vascular endothelial cells to maintain volume homeostasis.

  相似文献   

13.
Photosynthetic 14C fixation by Characean cells in solutionsof high pH containing NaH14CO3 gave a measure of the abilityof these cells to take up bicarbonate (H14CO3). Whereascells of Nitella translucens from plants collected and thenstored in the laboratory absorbed bicarbonate at 1–1.5µµmoles cm–2 sec–1, rates of 3–8µµmoles cm–2 sec–1 were obtained withN. translucens cells from plants grown in the laboratory. Influxesof 5–6 µµmoles cm–2 sec–1 wereobtained with Chara australis, 3–8 µµmolescm–2 sec–1 with Nitellopsis obtusa, and 1–5µµmoles cm–2 sec–1 with Tolypella intricata.It is considered that these influxes represent the activityof a bicarbonate pump, which may be an electrogenic process. In solutions of lower pH, H14CO3 uptake would be maskedby rapid diffusion of 14CO2 into the cells: the four Characeanspecies fixed 14CO2 at maximum rates of 30–40 µµmolescm–2 sec–1 (at 21° C).  相似文献   

14.
A technique is described which enables several components ofthe translocation system to be measured routinely, in vivo andsimultaneously. Plants are exposed to a 1-min pulse of 11CO2and the movement of the 11C pulse through the plant followedusing an array of scintillation counters. It is possible toestimate the time taken for the 11C to enter the sieve tubes.In addition, the speed of translocation can be obtained frommeasurements of the arrival of the 11C pulse at different positionsalong the translocation pathway. The increasing half-width ofthe pulse as it enters and moves through the sieve tubes givessome indication of the extent of the delays in the differentparts of the translocation system. The short half-life of the11C allows the measurements to be repeated on the same plantseveral times per day. A technique is discussed whereby dataon the movement of 11C could be combined with simultaneous measurementsof the rate of uptake of carbon dioxide to provide an estimateof the rate of movement of carbon.  相似文献   

15.
We used theCa2+-sensitive fluorescent dyefura 2, together with measurements of intracellularD-myo-inositol1,4,5-trisphosphate [Ins(1,4,5)P3],to assess the inhibitory effects of caffeine on signal transduction viaG protein-coupled receptor pathways in isolated rat mandibular salivaryacinar cells. ACh, norepinephrine (NE), and substance P (SP) all evokedsubstantial increases in the intracellular freeCa2+ concentration([Ca2+]i).Responses to ACh and NE were markedly inhibited by prior application of20 mM caffeine. The inhibitory effect of caffeine was not reproduced byphosphodiesterase inhibition with IBMX or addition of cell-permeantdibutyryl cAMP. In contrast to the ACh and NE responses, the[Ca2+]iresponse to SP was unaffected by caffeine. Despite this, SP and AChappeared to mobilize Ca2+ from acommon intracellular pool. Measurements of agonist-induced changes inIns(1,4,5)P3levels confirmed that caffeine inhibited the stimulus-response couplingpathway at a point beforeIns(1,4,5)P3 generation. Caffeine did not, however, inhibit[Ca2+]iresponses evoked by direct activation of G proteins with 40 mMF. These data show thatcaffeine inhibits G protein-coupled signal transduction in these cellsat some element that is common to the muscarinic and -adrenergicsignaling pathways but is not shared by the SP signaling pathway. Wesuggest that this element might be a specific structural motif on the Gprotein-coupled muscarinic and -adrenergic receptors.  相似文献   

16.
Skin from larval bullfrogs was mounted in an Ussing-type chamberin which the apical surface was bathed with a Ringer solution containing 115 mM K+ and thebasolateral surface was bathed with a Ringer solution containing 115 mMNa+. Ion transport was measured asthe short-circuit current(Isc) with alow-noise voltage clamp, and skin resistance(Rm) wasmeasured by applying a direct current voltage pulse. Membrane impedance was calculated by applying a voltage signal consisting of 53 sine wavesto the command stage of the voltage clamp. From the ratio of theFourier-transformed voltage and current signals, it was possible tocalculate the resistance and capacitance of the apical and basolateralmembranes of the epithelium(Ra andRb,Ca and Cb,respectively). With as the anion,Rm decreasedrapidly within 5 min following the addition of 150 U/ml nystatin to theapical solution, whereasIsc increasedfrom 0.66 to 52.03 µA/cm2 over a60-min period. These results indicate that nystatin becomes rapidlyincorporated into the apical membrane and that the increase inbasolateral K+ permeabilityrequires a more prolonged time course. Intermediate levels ofIsc were obtainedby adding 50, 100, and 150 U/ml nystatin to the apical solution. Thisproduced a progressive decrease in Ra andRb whileCa andCb remainedconstant. With Cl as theanion, Isc valuesincreased from 2.03 to 89.57 µA/cm2 following treatment with150 U/ml nystatin, whereas with gluconate as the anionIsc was onlyincreased from 0.63 to 11.64 µA/cm2. This suggests that theincrease in basolateral K+permeability produced by nystatin treatment, in the presence of morepermeable anions, is due to swelling of the epithelial cells of thetissue rather than the gradient for apicalK+ entry. Finally,Cb was notdifferent among skins exposed toCl,, or gluconate, despite the largedifferences inIsc, nor didinhibition of Iscby treatment with hyperosmotic dextrose cause significant changes inCb. These resultssupport the hypothesis that increases in cell volume activateK+ channels that are alreadypresent in the basolateral membrane of epithelial cells.

  相似文献   

17.
This research examined the hypothesis that as cacti evolve tothe leafless condition, the stem epidermis and cortex becomemore leaflike and more compatible with a photosynthetic role.All cacti in the relict genus Pereskia have non-succulent stemsand broad, thin leaves. All members of the derived subfamilyCactoideae are ‘leafless’, having an expanded cortexthat is the plant's only photosynthetic tissue. In Pereskia,leaves have a high stomatal density (mean: 50.7 stomata mm–2in the lower epidermis, 38.1 mm–2 in the upper epidermis),but stems have low stomatal densities (mean: 11.3 mm 2, threeof the species have none). Stems of Cactoideae have a high stomataldensity (mean: 31.1 mm–2, all species have stomata). Theouter cortex cells of stems of Cactoideae occur in columns,forming a palisade cortex similar to a leaf palisade parenchyma.In this palisade cortex, the fraction of tissue volume availablefor gas diffusion has a mean volume of 12.9%, which is identicalto that of Pereskia leaf palisade parenchyma. Pereskia stemcortex is much less aerenchymatous (mean: 5.3% of cortex volume).Cactoideae palisade cortex has a high internal surface density(0.0207 cm2 cm–2 which is higher than in Pereskia stemcortex (0.0150 cm2 cm–3) but not as high as Pereskia leafpalisade parenchyma (0.0396 cm2 cm–3). Pereskia stem cortexhas no cortical bundles, but Cactoideae cortexes have extensivenetworks of collateral vascular bundles that resemble leaf veins. Cactaceae, cactus, intercellular space, stomatal density, internal surface/volume, evolution  相似文献   

18.
Rate of Uptake of Potassium by Three Crop Species in Relation to Growth   总被引:4,自引:0,他引:4  
Barley, ryegrass, and fodder radish were grown in flowing nutrientsolutions at four potassium concentrations, [Ke+], from 0.05to 4 mg I–1. During the first 2 weeks after germinationthe response to [Ke+] (fodder radish > barley > ryegrass)depended on the potential relative growth rate, the ratio ofroot surface area to plant weight, and on the K+ flux into theroots. Subsequently, there was no effect of [Ke+] on growthrate within the range tested. The K+ flux decreased from 4–23? 10–12 mol cm–2 s–1 in the first 2 weeksafter germination, when it was concentration-dependent, to 2–5? 10–12 mol cm–2 s–1 after 4–5 weeks,when it became independent of [Ke+] down to 0.05 mg 1–1.The results explain the importance of high [Ke+] and rapid rootgrowth during the first 2 weeks after seed germination.  相似文献   

19.
The carbon dioxide compensation point of the unicellular greenalga, Chloretla saccharophila, was determined in aqueous mediumby a gas chromatographic method. Compensation points decreasedmarkedly from 63 cm3 m–3 at an external pH of 4.0 to 3.2cm3 m–3 at pH 8.0 and were not affected by the O2 concentrationof the medium. The calculated CO2 concentration required tosupport the half-maximum photosynthetic rate of the algal cellsranged from 6.0 mmol m–3 at an external pH of 60 to 1.5mmol m–3 at pH 8.0 and these values were not affectedby O2 concentration. The Km(CO2) of nbulose-l,5-bisphosphatecarboxylase isolated from cells grown either at pH 4.0 or pH8.0 was determined to be 64 mmol m–3. These results indicatethat loss of CO2 by photorespiration does not occur in C. saccharophilacells at acid pH and the disparity between the apparent affinityfor CO2 of the intact cells and that of the carboxylase indicatesthe operation of a ‘CO2 concentrating mechanism’in this alga at acid pH. Key words: Acidophilic alga, bicarbonate transport, Chlorella saccharophila, compensation point, CO2 affinity, PH, RuBP carboxylase  相似文献   

20.
The role of mitochondria inCa2+ homeostasis is controversial.We employed the Ca2+-sensitive dyerhod 2 with novel, high temporal and spatial resolution imaging toevaluate changes in the matrix freeCa2+ concentration of individualmitochondria([Ca2+]m)in agonist-stimulated, primary cultured aortic myocytes. Stimulation with 10 µM serotonin (5-HT) evoked modest cytosolicCa2+ transients[cytosolic freeCa2+ concentration([Ca2+]cyt)<500 nM; measured with fura 2] and triggered contractions inshort-term cultured myocytes. However, 5-HT triggered a large mitochondrial rhod 2 signal (indicating pronounced elevation of [Ca2+]m)in only 4% of cells. This revealed heterogeneity in the responses ofindividual mitochondria, all of which stained with MitoTracker GreenFM. In contrast, stimulation with 100 µM ATP evoked large cytosolicCa2+ transients (>1,000 nM) andinduced pronounced, reversible elevation of[Ca2+]m(measured as rhod 2 fluorescence) in 60% of cells. This mitochondrial Ca2+ uptake usually lagged behindthe cytosolic Ca2+ transient peakby 3-5 s, and[Ca2+]mdeclined more slowly than did bulk[Ca2+]cyt.The uptake delay may prevent mitochondria from interfering with rapidsignaling events while enhancing the mitochondrial response to large,long-duration elevations of[Ca2+]cyt.The responses of arterial myocytes to modest physiological stimulationdo not, however, depend on such marked changes in [Ca2+]m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号