首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The mitochondrial DNA of the Nicotiana sylvestris CMSII mutant carries a 72-kb deletion comprising the single copy nad7 gene that encodes the NAD7 subunit of the respiratory complex I (NADH-ubiquinone oxidoreductase). CMSII plants lack rotenone-sensitive complex I activity and are impaired in physiological and phenotypical traits. To check whether these changes directly result from the deletion of nad7, we constructed CMS transgenic plants (termed as CMSnad7) carrying an edited nad7 cDNA fused to the CAMV 35S promoter and to a mitochondrial targeting sequence. The nad7 sequence was transcribed and translated and the NAD7 protein directed to mitochondria in CMSnad7 transgenic plants, which recovered both wild type morphology and growth features. Blue-native/SDS gel electrophoresis and enzymatic assays showed that, whereas fully assembled complex I was absent from CMSII mitochondria, a functional complex was present in CMSnad7 mitochondria. Furthermore, a supercomplex involving complex I and complex III was present in CMSnad7 as in the wild type. Taken together, these data demonstrate that lack of complex I in CMSII was indeed the direct consequence of the absence of nad7. Hence, NAD7 is a key element for complex assembly in plants. These results also show that allotopic expression from the nucleus can fully complement the lack of a mitochondrial-encoded complex I gene.  相似文献   

2.
Previous analyses suggested that the Nicotiana sylvestris CMSII mutant carried a large deletion in its mitochondrial genome. Here, we show by cosmid mapping that the deletion is 60 kb in length and contains several mitochondrial genes or ORFs, including the complex I nad7 gene. However, due to the presence of large duplications in the progenitor mitochondrial genome, the only unique gene that appears to be deleted is nad7. RNA gel blot data confirm the absence of nad7 expression, strongly suggesting that the molecular basis for the CMSII abnormal phenotype, poor growth and male sterility, is the altered complex I structure. The CMSII mitochondrial genome appears to consist essentially of one of two subgenomes resulting from recombination between direct short repeats. In the progenitor mitochondrial genome both recombination products are detected by PCR and, reciprocally, the parental fragments are detected at the substoichiometric level in the mutant. The CMSII mtDNA organization has been maintained through six sexual generations.  相似文献   

3.
4.
5.
Mitochondrial NADH-ubiquinone oxidoreductase (complex I) is the largest enzyme of the oxidative phosphorylation system, with subunits located at the matrix and membrane domains. In plants, holocomplex I is composed of more than 40 subunits, 9 of which are encoded by the mitochondrial genome (NAD subunits). In Nicotiana sylvestris, a minor 800-kDa subcomplex containing subunits of both domains and displaying NADH dehydrogenase activity is detectable. The NMS1 mutant lacking the membrane arm NAD4 subunit and the CMSII mutant lacking the peripheral NAD7 subunit are both devoid of the holoenzyme. In contrast to CMSII, the 800-kDa subcomplex is present in NMS1 mitochondria, indicating that it could represent an assembly intermediate lacking the distal part of the membrane arm. L-galactono-1,4-lactone dehydrogenase (GLDH), the last enzyme in the plant ascorbate biosynthesis pathway, is associated with the 800-kDa subcomplex but not with the holocomplex. To investigate possible relationships between GLDH and complex I assembly, we characterized an Arabidopsis thaliana gldh insertion mutant. Homozygous gldh mutant plants were not viable in the absence of ascorbate supplementation. Analysis of crude membrane extracts by blue native and two-dimensional SDS-PAGE showed that complex I accumulation was strongly prevented in leaves and roots of Atgldh plants, whereas other respiratory complexes were found in normal amounts. Our results demonstrate the role of plant GLDH in both ascorbate biosynthesis and complex I accumulation.  相似文献   

6.
Plants accumulate high levels of Gamma amino butyric acid (GABA) in response to different environmental stresses and GABA metabolism has different functions such as osmotic and pH regulation, bypass of tricarboxylic acid cycle, and C:N balance. The cytoplasmic male sterile (CMS) II mutant of Nicotiana sylvestris has a deletion in the mitochondrial gene nad7 which encodes the NAD7 subunit of complex I which causes increased leaf respiration, impaired photosynthesis, slower growth and increased amino acid levels. In this study we aimed to elucidate the role of GABA and GABA metabolism in different genotypes of the same plant system under salt stress (100mM NaCl) in short (24h) and long (7, 14 and 21 days) terms. We have investigated the differences in leaf fresh and dry weights, relative water content, photosynthetic efficiency (F(v)/F(m)), glutamate dehydrogenase (GDH, EC 1.4.1.4) and glutamate decarboxylase (GAD, EC 4.1.1.15) enzyme activities, GABA content and GAD gene expression profiles. GDH activity showed variations in CMSII and wild type (WT) plants in the first 24h. GAD gene expression profiles were in good agreement with the GAD enzyme activity levels in CMSII and WT plants after 24h. In long-term salinity, GAD activities increased in WT but, decreased in CMSII. GABA accumulation in WT and CMSII plants in short and long term was induced by salt stress. Variations in GDH and GAD activities in relation to GABA levels were discussed and GABA metabolism has been proposed to be involved in better performance of CMSII plants under long term salinity.  相似文献   

7.
A partially assembled complex I in NAD4-deficient mitochondria of maize   总被引:3,自引:0,他引:3  
The proton-translocating NADH:ubiquinone oxidoreductase (respiratory complex I) consists of at least 32 subunits in higher plants, nine of which are mitochondrially encoded (NAD 1–7, NAD4L, NAD9). Complex I (CI) has been analyzed from a mitochondrial mutant of maize, NCS2, that carries a deletion for the 3′ end of the nad4 gene. Mitochondria from highly defective, near-homoplasmic mutant plants have only trace amounts of the normal complex I. Instead, a reduced amount of a smaller complex, which also exhibits NADH dehydrogenase activity, is detected on ‘blue-native’ polyacrylamide gels. Subunits of 76 kDa, 40 kDa and 55 kDa, as well as NAD7 and NAD9, have been identified in the subcomplex by their cross-reactivity with heterologous antisera. The corresponding subunits in Neurospora are localized in a ‘peripheral arm’ of CI, which is known to assemble independently of a ‘membrane arm’. The maize NCS2 CI subcomplex is loosely bound to the membrane and is missing several subunits that could be membrane components. Thus, the mutant CI subcomplex may consist of a peripheral arm. A reduction in the steady-state levels of NAD7 and NAD9 in NCS2 mitochondria occurs despite normal rates of biosynthesis and there is a concomitant decrease of the nuclear encoded 76 kDa subunit. The reduction in CI-associated NADH dehydrogenase activity in the nad4 -deficient NCS2 mutant mitochondria is not associated with a compensatory increase in the activities or amounts of the putative ‘exogenous’ NAD(P)H dehydrogenases that are found in plant mitochondria.  相似文献   

8.
The mitochondrial genome (mtDNA) of the entomopathogenic fungus Lecanicillium muscarium (synonym Verticillium lecanii) with a total size of 24,499-bp has been analyzed. So far, it is the smallest known mitochondrial genome among Pezizomycotina, with an extremely compact gene organization and only one group-I intron in its large ribosomal RNA (rnl) gene. It contains the 14 typical genes coding for proteins related to oxidative phosphorylation, the two rRNA genes, one intronic ORF coding for a possible ribosomal protein (rps), and a set of 25 tRNA genes which recognize codons for all amino acids, except alanine and cysteine. All genes are transcribed from the same DNA strand. Gene order comparison with all available complete fungal mtDNAs-representatives of all four Phyla are included-revealed some characteristic common features like uninterrupted gene pairs, overlapping genes, and extremely variable intergenic regions, that can all be exploited for the study of fungal mitochondrial genomes. Moreover, a minimum common mtDNA gene order could be detected, in two units, for all known Sordariomycetes namely nad1-nad4-atp8-atp6 and rns-cox3-rnl, which can be extended in Hypocreales, to nad4L-nad5-cob-cox1-nad1-nad4-atp8-atp6 and rns-cox3-rnl nad2-nad3, respectively. Phylogenetic analysis of all fungal mtDNA essential protein-coding genes as one unit, clearly demonstrated the superiority of small genome (mtDNA) over single gene comparisons.  相似文献   

9.
Black corals comprise a globally distributed shallow- and deep-water taxon whose phylogenetic position within the Anthozoa has been debated. We sequenced the complete mitochondrial genome of the antipatharian Chrysopathes formosa to further evaluate its phylogenetic relationships. The circular mitochondrial genome (18,398 bp) consists of 13 energy pathway protein-coding genes and two ribosomal RNAs, but only two transfer RNA genes (trnM and trnW), as well as a group I intron within the nad5 gene that contains the only copies of nad1 and nad3. No novel genes were found in the antipatharian mitochondrial genome. Gene order and genome content are most similar to those of the sea anemone Metridium senile (subclass Hexacorallia), with differences being the relative location of three contiguous genes (cox2-nad4-nad6) and absence (from the antipatharian) of a group I intron within the cox1 gene. Phylogenetic analyses of multiple protein-coding genes support classifying the Antipatharia within the subclass Hexacorallia and not the subclass Ceriantipatharia; however, the sister-taxon relationships of black corals within Hexacorallia remain inconclusive.  相似文献   

10.
CMS (cytoplasmic male sterile) rapeseed is produced by asymmetrical somatic cell fusion between the Brassica napus cv. Westar and the Raphanus sativus Kosena CMS line (Kosena radish). The CMS rapeseed contains a CMS gene, orf125, which is derived from Kosena radish. Our sequence analyses revealed that the orf125 region in CMS rapeseed originated from recombination between the orf125/orfB region and the nad1C/ccmFN1 region by way of a 63 bp repeat. A precise sequence comparison among the related sequences in CMS rapeseed, Kosena radish and normal rapeseed showed that the orf125 region in CMS rapeseed consisted of the Kosena orf125/orfB region and the rapeseed nad1C/ccmFN1 region, even though Kosena radish had both the orf125/orfB region and the nad1C/ccmFN1 region in its mitochondrial genome. We also identified three tandem repeat sequences in the regions surrounding orf125, including a 63 bp repeat, which were involved in several recombination events. Interestingly, differences in the recombination activity for each repeat sequence were observed, even though these sequences were located adjacent to each other in the mitochondrial genome. We report results indicating that recombination events within the mitochondrial genomes are regulated at the level of specific repeat sequences depending on the cellular environment.  相似文献   

11.
12.
13.
14.
15.
16.
17.
We sequenced and annotated the complete mitochondrial (mt) genome of the priapulid Priapulus caudatus in order to provide a source of phylogenetic characters including an assessment of gene order arrangement. The genome was 14,919 bp in its entirety with few, short non-coding regions. A number of protein-coding and tRNA genes overlapped, making the genome relatively compact. The gene order was: cox1, cox2, trnK, trnD, atp8, atp6, cox3, trnG, nad3, trnA, trnR, trnN, rrnS, trnV, rrnL, trnL(yaa), trnL(nag), nad1, -trnS(nga), -cob, -nad6, trnP, -trnT, nad4L, nad4, trnH, nad5, trnF, -trnE, -trnS(nct), trnI, -trnQ, trnM, nad2, trnW, -trnC, -trnY; where '-' indicates genes transcribed on the opposite strand. The gene order, although unique amongst Metazoa, shared the greatest number of gene boundaries and the longest contiguous fragments with the chelicerate Limulus polyphemus. The mt genomes of these taxa differed only by a single inversion of 18 contiguous genes bounded by rrnS and trnS(nct). Other arthropods and nematodes shared fewer gene boundaries but considerably more than the most similar non-ecdysozoan.  相似文献   

18.
19.
20.
Phage bIL66 is unable to grow on Lactococcus lactis cells harboring the abortive infection gene abiD1. Spontaneous phage mutants able to grow on AbiD1 cells were used to study phage-Abi interaction. A 1.33-kb DNA segment of a mutant phage allowed growth of AbiD1s phages in AbiD1 cells when present in trans. Sequence analysis of this segment revealed an operon composed of four open reading frames, designated orf1 to orf4. The operon is transcribed 10 min after infection from a promoter presenting an extended -10 consensus sequence but no -35 sequence. Analysis of four independent AbiD1r mutants revealed a different point mutation localized in orf1, implying that this open reading frame is needed for sensitivity to AbiD1. However, the sensitivity is partly suppressed when orf3 is expressed in trans on a high-copy-number plasmid, suggesting that AbiD1 acts by decreasing the concentration of an available orf3 product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号