首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
季朝能  张冰  姜涛  盛小禹  毛裕民 《遗传学报》2000,27(12):1100-1107
通过对耐热碱性磷酸酯酶TAPND27活性位点S(69)两侧的E(68)和S(70)的定点突变,得到了3个突变子E68S、S70A和E68SS70A。在蛋白纯化的基础上测定了3个变体的一些酶学性质,与TAPND27相比,E68S的比活力上升8倍,Tm下降了3℃,最适反应温度上升了20℃;S70A的比活力上升了1部,Tm下降了2℃,最适反应温度上升了5℃;E68SS70A的比活力下降了50%,Tm下降  相似文献   

2.
人组织因子基因位于1p21-22,启动子区有2个AP-1位点、1个kB样位点,5个Sp1位点及3个Egr-1位点。其中TE的基础表达与5个Sp1位点均有关;血清反应元件与近端3个Sp1位点和3个Egr-1位点有关;  相似文献   

3.
黑曲霉T21是由黑曲霉3.795经诱变育种获得的糖化酶高产菌株,为阐明其高产的分子机制,由黑曲霉3.795克隆了糖化酶结构基因及其5′旁侧序列,并与黑曲霉T21的相应序列进行了比较.由黑曲霉3.795菌丝体分离染色体DNA,Southern杂交分析表明,糖化酶结构基因位于~2.5kb的EcoRⅠ-EcoRⅤ染色体DNA片段上,在此EcoRⅠ位点上游约1.0kb处有一SalⅠ位点.为构建糖化酶结构基因及其5′旁侧序列的基因组文库,该染色体DNA分别用EcoRⅠ+EcoRⅤ和EcoR+SalⅠ消化,琼脂糖凝胶电泳分离并回收长度在1.0kb左右和2.5kb左右的DNA片段,分别与pUC19载体连接后转化入E.coliDH5.用原位杂交方法筛选到了携带糖化酶基因编码区及其1505bp5′旁侧序列的阳性克隆.对克隆片段的DNA序列进行了测定并与黑曲霉T21的相应序列进行了比较,结果表明,在糖化酶基因编码区及其150bp3′非编码区内,未发现碱基差异,但在-340~-1505的5′上游区内发生了9个位置的碱基变化,包括缺失、插入和替换.这些结果表明,黑曲霉T21与3.795的糖化酶产量的差异与其结构基因无关,但可能与其  相似文献   

4.
赵晓娟  孟雁 《遗传学报》1999,26(6):610-615
对KM-1d小鼠的致病基因ld进行染色体定位,采用异构蛋白及同功酶电泳技术和体外扩增技术对同源导入近交系小鼠C57BL/6.KM-ld20对染色上的14个笔化标记基因位点和61个SSLP位点进行筛选,发现ld基因与2号染色体上的D2Mit30、D2Mit62和D2it633个SSLP位点连锁,从而把ld基因初步定位于2号染色体,为进一步对ld基因准确定位,培育了86只(C57BL/6*KM-1在*  相似文献   

5.
水稻纯合胚致死突变研究   总被引:2,自引:0,他引:2  
凌定厚  徐信兰 《遗传学报》1997,24(2):127-136
以EMS的处理并结合组织培养技术成功地获得胚致死突变的纯合再生植株。该植株生长发育正常,除种子无发芽能力外,纯合突变体的一切性状均与亲本品种表现一致。观察到胚败育的各种表现:(1)仅具有一个球形胚。(2)完全没有胚器的分化。(3)仅具胚根的分化而无胚芽的分化。(4)胚芽分化不完全。(5)胚芽与胚根之间没有输导组织相连接或者输导组织发育不完全等等。(纯合突变体×正常品种)杂种当代的种子(F1)发芽正常,而由F1及R1植株上所产生的种子(F2及R2)约有3/4具发芽能力,而1/4无发芽能力。统计分析的结果表明胚致死突变受隐性单基因控制。据我们所知,获得胚致死突变纯合体的成熟植株,本研究乃是首例报告,至少在水稻上是如此。在以利用无融合生殖之固定杂种优势的“一系法”杂交水稻生产的设想中,胚致死突变可作为胚乳的提供者而加以利用。  相似文献   

6.
根据猪瘟病毒C株的序列,以计算机辅助设计,化学合成1对引物(PF5648/PR6604),应用RTPCR技术从感染猪血中成功地扩增了我国猪瘟病毒强毒石门株NS23基因片段,大小为957bp,位于NS3基因的中部NTPase和Helicase活性区。克隆后测序,结果表明该段基因产物具有解旋酶超家族全部七个特征性保守序列,包括共同的NTP结合基序A位点(GXGKT/S)和B位点(3hy,2x)D。序列同源性比较表明,石门株与日本的ALD和GPE-株同源性最高,与其它3株猪瘟病毒(C株、Brescia株和Alfort株)的同源性也很高,并与2株牛病毒性腹泻病毒(BVDV)(NADL株和SD1株)也有较高的同源性,尤其是由核苷酸序列推导的氨基酸序列,同源性均大于90%,是瘟病毒属基因组中最保守的区段,这与该基因产物在病毒复制及聚蛋白前体加工过程中所具有的重要功能是一致的  相似文献   

7.
转OMT/PGH基因猪外源基因整合及遗传特性研究   总被引:3,自引:0,他引:3  
樊俊华  陈清轩 《遗传学报》1999,26(5):497-500
实验以转OMT/PGH基因猪的G0,G1,G2和G3代共8头猪为材料,应用同位素和非同位素标记的染色体原位杂交技术,对外源OMT/PGH基因在猪染色体上整合位点进行研究,结果表明:(1)外源基因可以整合在染色体上,整合的位点是随机的。(2)整合在染色体上的外源基因可以遗传给子代;(3)整合在染色体上的外源基因在转基因动物世代过程中整合的位点是相对稳定的。  相似文献   

8.
染色体组分割的甘蓝型油菜单倍体的形成途径   总被引:1,自引:0,他引:1  
在360株甘蓝型油菜与诸葛菜的属间远缘杂种自交后代中,发现了3株单倍体植株。通过对杂种的细胞学表明,染色体组分割和核融合是单倍体的形成机制。通过人工加倍,获得了纯合二倍体植株。对纯合二倍体研究表明:纯合二倍体具有高度遗传稳定性,具有与花粉植株的纯合二倍体的同样的育种意义。  相似文献   

9.
戊型肝炎病毒(HEV)合成肽及基因重组抗原免疫反应性研究   总被引:2,自引:0,他引:2  
用ORF2、ORF3合成肽抗原(1~10号)及基因工程重组的ORF2抗原(1和2号)分别建立了酶联免疫方法(EIA),检测60份戊型肝炎病人血清中HEVIgG及IgM10个合成肽抗原(Sp1-Sp10)及2个重组抗原(Re1、Re2),均和HEV阳性血清发生特异反应,但阳性率和反应强度差别很大。以Re1(ORF2,402~660)检测的抗体阳性率最高,为96.7%(58/60);Sp6(ORF3,88~123)次之,为93.3%(56/60);以上两种抗原混合使用阳性率为100%(60/60)。Sp6、Re1及这两种抗原混合使用检测抗HEVIgM,阳性率分别为18.3%(11/60)、66.7%(40/60)和66.7%(40/60)。研究结果表明:合成肽6号(Sp6)及重组抗原1号(Re1)是制备戊肝抗体诊断试剂的理想抗原。  相似文献   

10.
马尾松天然群体同工酶遗传变异   总被引:15,自引:0,他引:15  
黄启强  王莲辉 《遗传学报》1995,22(2):142-151
6个马尾松天然群体同工酶分析结果表明:马尾松群体具有较丰富的遗传变异,其多态位点百分率(P)=76.2%;等位基因平均数(Na)=2.39;有效等位基因平均数(Ne)=1.62,平均杂合率(He)=0.273。但群体间遗传分化极小,基因分化系数(G_(ST))=0.0172,遗传距离(D)=0.011±0.005。总遗传变异中,约2%来自群体间,而约98%的遗传变异存在于群体内的个体,并且其变异又主要来源于1/3的基因位点。马尾松群体近似于随机交配群体,绝大多数位点处于平衡状况,但也有约1/3的位点并非随机交配,存在不同程度的近交。  相似文献   

11.
12.
In the yeast Saccharomyces cerevisiae, glucoamylase activity appears specifically in sporulating cells heterozygous for the mating-type locus (MAT). We identified a sporulation-specific glucoamylase gene (SGA) and show that expression of SGA is positively regulated by the mating-type genes, both MATa1 and MAT alpha 2. Northern blot analysis revealed that control of SGA is exerted at the level of RNA production. Expression of SGA or the consequent degradation of glycogen to glucose in cells is not required for meiosis or sporulation, since MATa/MAT alpha diploid cells homozygous for an insertion mutation at SGA still formed four viable ascospores.  相似文献   

13.
Three unlinked, homologous genes, STA1, STA2, and STA3, encode the extracellular glycosylated glucoamylase isozymes I, II, and III, respectively, in Saccharomyces species. S. cerevisiae, which is sta0 (absence of functional STA genes in haploids), does carry a glucoamylase gene, delta sta, expressed only during sporulation (W. J. Colonna and P. T. Magee, J. Bacteriol. 134:844-853, 1978; I. Yamashita and S. Fukui, Mol. Cell. Biol. 5:3069-3073, 1985). In this study we examined some of the physiological and genetic factors that affect glucoamylase expression. It was found that STA2 strains grown in synthetic medium produce glucoamylase only in the presence of either Maltrin M365 (a mixture of maltooligosaccharides) or starch. Maximal levels of glucoamylase activity were found in cells grown in rich medium supplemented with glycerol plus ethanol, starch, or Maltrin. When various sugars served as carbon sources they all supported glucoamylase synthesis, although at reduced levels. In any given growth medium glucoamylase isozyme II synthesis was modulated by functionality of the mitochondria. Synthesis of glucoamylase is continuous throughout the growth phases, with maximal secretion taking place in the early stationary phase. In the various regimens, the differences in enzyme accumulation are accounted for by differences in the levels of glucoamylase mRNA. Both glucoamylase mRNA and enzyme activity were drastically and coordinately inhibited in MATa/MAT alpha diploids and by the presence of the regulatory gene STA10. Both effects were partially overcome when the STA2 gene was present on a multicopy plasmid. The STA2 mRNA and glucoamylase were coinduced in sporulating STA2/STA2 diploids. A smaller, coinduced RNA species was also detected by Northern blotting with a STA2 probe. The same mRNA species was detected in sporulating sta0 diploids and is likely to encode the sporulation-specific glucoamylase.  相似文献   

14.
Saccharomyces cerevisiae has been used widely both as a model system for unraveling the biochemical, genetic, and molecular details of gene expression and the secretion process, and as a host for the production of heterologous proteins of biotechnological interest. The potential of starch as a renewable biological resource has stimulated research into amylolytic enzymes and the broadening of the substrate range of S. cerevisiae. The enzymatic hydrolysis of starch, consisting of linear (amylose) and branched glucose polymers (amylopectin), is catalyzed by alpha- and beta-amylases, glucoamylases, and debranching enzymes, e.g., pullulanases. Starch utilization in the yeast S. cerevisiae var. diastaticus depends on the expression of the three unlinked genes, STA1 (chr. IV), STA2 (chr. II), and STA3 (chr. XIV), each encoding one of the extracellular glycosylated glucoamylases isozymes GAI, GAII, or GAIII, respectively. The restriction endonuclease maps of STA1, STA2, and STA3 are identical. These genes are absent in S. cerevisiae, but a related gene, SGA1, encoding an intracellular, sporulation-specific glucoamylase (SGA), is present. SGA1 is homologous to the middle and 3' regions of the STA genes, but lacks a 5' sequence that encodes the domain for secretion of the extracellular glucoamylases. The STA genes are positively regulated by the presence of three GAM genes. In addition to positive regulation, the STA genes are regulated negatively at three levels. Whereas strains of S. diastaticus are capable of expressing the STA genes, most strains of S. cerevisiae contain STA10, whose presence represses the expression of the STA genes in an undefined manner. The STA genes are also repressed in diploid cells, presumably by the MATa/MAT alpha-encoded repressor. STA gene expression is reduced in liquid synthetic media, it is carbon catabolite repressed by glucose, and is inhibited in petite mutants.  相似文献   

15.
I. BALOGH AND A. MARÁZ. 1996. STA genes are responsible for producing extracellular glucoamylase enzymes in Saccharomyces cerevisiae var. diastaticus . These genes exist in three forms, which are located on three different chromosomes. The nucleotide sequences of the STA genes are highly homologous. A sporulation-specific glucoamylase gene called SGA1 exists in every Saccharomyces cerevisiae strain, this also having a partly homologous DNA sequence with the STA genes. In this study S. cerevisiae var. diastaticus and brewer's yeast strains were characterized by pulsed-field gel electrophoresis. In many cases chromosome length polymorphism (CLP) was found. The chromosomes were hybridized with a DNA probe which was homologous with STA genes and the SGA1 gene. Presence of the SGA1 gene was detected in each strain used. Four brewing yeasts were found to have homologous sequences with the STA3 gene on chromosome XIV despite the fact that these strains were not able to produce extracellular glucoamylase enzyme.  相似文献   

16.
Any one of three homologous genes - STA1, STA2 and STA3 - encoding glucoamylase isozymes I, II and III respectively, allows the Saccharomyces species to utilize starch as a sole carbon source. We show in this paper that glucoamylase II production can be increased 4-fold over the level produced by STA2 strains, by using a two-step fermentation and a yeast strain transformed with a high-copy-number plasmid carrying the STA2 gene. The accumulation of anomalous STA2 mRNA species, mainly differing at their 5' ends, and saturation of step(s) in the secretory pathway appear to be among the major factors limiting glucoamylase expression in synthetic media.  相似文献   

17.
18.
DNA coding for extracellular glucoamylase genes STA1 and STA3 was isolated from DNA libraries of two Saccharomyces diastaticus strains, each carrying STA1 or STA3. Cells transformed with a plasmid carrying either the STA1 or STA3 gene secreted glucoamylases having the same enzymatic and immunological properties and the same electrophoretic mobilities in acrylamide gel electrophoresis as those of authentic glucoamylases. Southern blot analysis of genomic DNA from S. diastaticus and a glucoamylase-non-secreting yeast, Saccharomyces cerevisiae, revealed that the STA1 and STA3 loci of S. diastaticus showed a high degree of homology, and that both yeast species (S. diastaticus and S. cerevisiae) contained DNA segments highly homologous to those of the extracellular glucoamylase genes. Restriction maps of the homologous DNA segments suggested that the extracellular glucoamylase genes of S. diastaticus may have arisen from recombination among the resident DNA segments in S. cerevisiae.  相似文献   

19.
Summary Each one of at least three unlinked STA loci (STA1, STA2 and STA3), in the genome of Saccharomyces diastaticus controls starch hydrolysis by coding for an extracellular glucoamylase. Cloned STA2 sequences were used as hybridization probes to investigate the physical structure of the family of STA genes in the genomes of different Saccharomyces strains. Sta+ strains, each carrying a single genetically defined STA locus, were crossed with a Sta strain and the segregation behavior of the functional locus (i.e. Sta+) and sequences homologous to a cloned STA2 glucoamylase structural gene at that locus were analyzed. The results indicate that in all strains examined there is a multiplicity of sequences that are homologous to STA2 DNA but that only the functional STA loci contain extensive 5 and 3 homology to each other and can be identified as residing on unique fragments of DNA; that all laboratory yeast strains examined contain extensive regions of the glucoamylase gene sequences at or closely linked to the STA1 chromosomal position; that the STA1 locus contains two distinct glucoamylase gene sequences that are closely linked to each other; and that all laboratory strains examined also contain another ubiquitous sequence that is not allelic to STA1 and is nonfunctional (Sta), but has retained extensive sequence homology to the 5 end of the cloned STA2 gene. It was also determined that the DEX genes (which control dextrin hydrolysis in S. diastaticus), MAL5 (a gene once thought to control maltose metabolism in yeast) and the STA genes are allelic to each other in the following manner: STA1 and DEX2, STA1 and MAL5, and STA2 and DEX1 and STA3 and DEX3.  相似文献   

20.
Using the Saccharomyces cerevisiae MATa/MATalpha ORF deletion collection, homozygous deletion strains were identified that undergo mating with MATa or MATalpha haploids. Seven homozygous deletions were identified that confer enhanced mating. Three of these, lacking CTF8, CTF18, and DCC1, mate at a low frequency with either MATa or MATalpha haploids. The products of these genes form a complex involved in sister chromatid cohesion. Each of these strains also exhibits increased chromosome loss rates, and mating likely occurs due to loss of one copy of chromosome III, which bears the MAT locus. Three other homozygous diploid deletion strains, ylr193cDelta/ylr193cDelta, yor305wDelta/yor305wDelta, and ypr170cDelta/ypr170cDelta, mate at very low frequencies with haploids of either or both mating types. However, an ist3Delta/ist3Delta strain mates only with MATa haploids. It is shown that IST3, previously linked to splicing, is required for efficient processing of the MATa1 message, particularly the first intron. As a result, the ist3Delta/ist3Delta strain expresses unbalanced ratios of Matalpha to Mata proteins and therefore mates with MATa haploids. Accordingly, mating in this diploid can be repressed by introduction of a MATa1 cDNA. In summary, this study underscores and elaborates upon predicted pathways by which mutations restore mating function to yeast diploids and identifies new mutants warranting further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号