首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蝴蝶兰花发育的分子生物学研究进展   总被引:1,自引:0,他引:1  
蝴蝶兰花非常独特且高度进化,如萼片瓣化、瓣片特化为唇瓣、雌雄蕊合生成合蕊柱及子房发育须由授粉启动等,是单子叶植物花发育研究的理想材料。近年来蝴蝶兰花发育分子生物学取得了重要进展。该文就近年来国内外有关蝴蝶兰开花转换及花器官发育相关基因研究以及B类基因与兰花花被的进化发育关系方面的研究进展进行综述。研究表明:MADS基因在蝴蝶兰开花转换及花器官发育过程中起重要作用,推测其中的DEF(DE-FICIENS)-like基因早期经过2轮复制,形成了4类不同的DEF-like基因,进而决定兰花花被属性。蝴蝶兰花发育分子生物学的深入研究,将极大地利于通过基因工程手段提高蝴蝶兰花品质如花色改良及花期调控等,推动分子育种进程。  相似文献   

2.
兰科植物是开花植物中最大的家族之一,其花高度进化,具有花瓣状的萼片,特化的唇瓣和雌雄蕊合生的蕊柱,是单子叶植物花发育生物学研究的理想材料。近年来有关兰花花发育基因调控的研究已取得了一些进展,本文从兰花开花转换和兰花花器官的形成两方面综述了近年来国内外关于兰花花发育分子机理方面的研究进展,主要介绍了文心兰、蝴蝶兰和石斛兰的花发育相关基因,并推测了兰花花被的进化发育过程,认为兰花的DEFICIENS(DEF)类基因在早期经过两轮复制,形成了四类DEF基因,从而促进了花萼与花瓣的分离、侧瓣与唇瓣的分离。该文最后对今后兰花花发育研究的发展方向进行了展望。  相似文献   

3.
4.
Molecular aspects of flower development in grasses   总被引:1,自引:0,他引:1  
  相似文献   

5.
Orchids are known for their beauty and complexity of flower and ecological strategies. The evolution in orchid floral morphology, structure, and physiological properties has held the fascination of botanists for centuries, from Darwin through to the present. In floral studies, MADS‐box genes contributing to the now famous ABCDE model of floral organ identity control have dominated conceptual thinking. The sophisticated orchid floral organization offers an opportunity to discover new variant genes and different levels of complexity to the ABCDE model. Recently, several remarkable research reports on orchid MADS‐box genes, especially B‐class MADS‐box genes, have revealed the evolutionary track and important functions on orchid floral development. Diversification and fixation of both paleoAP3 gene sequences and expression profiles might be explained by subfunctionalization and even neofunctionalization. Knowledge about MADS‐box genes encoding ABCDE functions in orchids will give insights into the highly evolved floral morphogenetic networks of orchids.  相似文献   

6.
Flower development can be divided into four major steps: phase transition from vegetative to reproductive growth, formation of inflorescence meristem, formation and identity determination of floral organs, and growth and maturation of floral organs. Intercellular and intracellular signalling mechanisms must have important roles in each step of flower development, because it requires cell division, cell growth, and cell differentiation in a concerted fashion. Molecular genetic analysis of the process has started by isolation of a series of mutants with unusual flowering time, with aberrant structure in inflorescence and in flowers, and with no self-fertilization. At present more than 60 genes are identified from Arabidopsis thaliana and some of them have cloned. Although the information is still limited, several types of signalling systems are revealed. In this review, we summarize the present genetic aspects of the signalling network underlying the processes of flower development.  相似文献   

7.
花对称性的研究进展   总被引:1,自引:0,他引:1  
花对称性(floral symmetry)是被子植物花部结构的典型特性之一,主要有辐射对称和两侧对称两种形式。被子植物初始起源的花为辐射对称,而两侧对称的花则是由辐射对称的花演变而来。两侧对称的花部结构是被子植物进化过程中的一个关键的革新,被认为是物种形成和分化的关键推动力之一。近年来有关花对称性的形成和进化机制的研究在植物学科的不同领域均取得了长足的进展。本文综述了花对称性在发育生物学、传粉生物学、生殖生态学及分子生物学等方面的研究进展。两侧对称形成于被子植物花器官发育的起始阶段,随后贯穿整个花器官发育过程或者出现在花器官发育后期的不同阶段。花器官发育过程中一种或多种类型器官的败育以及特异性花器官结构的形成是两侧对称形成的主要原因。研究表明,在传粉过程的不同阶段,花对称性均会受到传粉昆虫介导的选择作用。相比辐射对称的花,两侧对称的花提高了特异性传粉者的选择作用,增加了花粉落置的精确性,进而确保了其生殖成功。花对称性的分子机理已经在多种双子叶植物中进行了深入的研究。现有的证据表明,CYC同源基因在花对称性的分子调控方面起着非常重要的作用。花对称性在被子植物进化过程中是如何起源,与其他花部构成之间是否协同作用,一些不符合一般模式的科属其花对称性的形成机制等都是今后要进一步研究的命题。  相似文献   

8.
The flower is an evolutionary innovation in angiosperms that drives the evolution of biodiversity.The carpel is integral to a flower and develops into fruits after fertilization,while the perianth,consisting of the calyx and corolla,is decorative to facilitate pollination and protect the internal organs,including the carpels and stamens.Therefore,the nature of flower origin is carpel and stamen origin,which represents one of the greatest and fundamental unresolved issues in plant evolutionary bi...  相似文献   

9.
细胞分裂素对拟南芥(Arabidopsis thaliana)花分生组织细胞的分裂和分化具有重要作用。本研究利用APETALA1(AP1)特异启动子在花分生组织和第1、2轮花器官中表达细胞分裂素合成酶(isopentyl transferase,IPT)基因IPT4,研究细胞分裂素对花和花器官发育的影响。在pAP1∷IPT4转基因植株中出现了花密集和花器官数目增多等现象。原位杂交和GUS组织染色结果发现,在pAP1∷IPT4转基因植株中,花分生组织特征决定基因LEAFY(LFY)与花器官特征决定基因AP1、PISTILLATA(PI)和AGAMOUS(AG)的表达量均有不同程度的提高。研究结果表明在拟南芥中表达pAP1∷IPT4影响其花和花器官的正常发育。  相似文献   

10.
Conservation and diversity in flower land   总被引:1,自引:0,他引:1  
During the past decade, enormous progress has been made in understanding the molecular regulation of flower development. In particular, homeotic genes that determine the identity of the floral organs have been characterised from different flowering plants, revealing considerable conservation among angiosperm species. On the other hand, evolutionary diversification has led to enormous variation in flower morphology. Increasing numbers of reports have described differences in the regulation, redundancy and function of homeotic genes from various species. These fundamentals of floral organ specification are therefore an ideal subject for comparative analyses of flower development, which will lead to a better understanding of plant evolution, plant development and the complexity of molecular mechanisms that control flower development and morphology.  相似文献   

11.
目的:探讨草原龙胆花发育的分子机制,为进一步阐述花器官同源异型、属于MADS-box基因家族的一系列基因在调节开花植物花瓣和雄蕊的发育中的作用奠定基础。方法:以草原龙胆不同发育时期的花器官(萼片、花瓣、雄蕊、雌蕊)原基的cDNA作为试验方(tester),以茎叶组织的cDNA作为驱动方(driver),利用抑制性消减杂交技术构建了一个富集花器官发育特性基因的抑制性差减cDNA文库。对抑制性差减cDNA文库进行筛选、测序及Blast同源性比较。结果:获得了与花器官发育相关的特异性基因。结论:构建了抑制性差减cDNA文库,为克隆草原龙胆花器官发育特异性基因全长序列奠定了基础。  相似文献   

12.
Conversion of leaves into petals in Arabidopsis   总被引:22,自引:0,他引:22  
More than 200 years ago, Goethe proposed that each of the distinct flower organs represents a modified leaf [1]. Support for this hypothesis has come from genetic studies, which have identified genes required for flower organ identity. These genes have been incorporated into the widely accepted ABC model of flower organ identity, a model that appears generally applicable to distantly related eudicots as well as monocot plants. Strikingly, triple mutants lacking the ABC activities produce leaves in place of flower organs, and this finding demonstrates that these genes are required for floral organ identity [2]. However, the ABC genes are not sufficient for floral organ identity since ectopic expression of these genes failed to convert vegetative leaves into flower organs. This finding suggests that one or more additional factors are required [3, 4]. We have recently shown that SEPALLATA (SEP) represents a new class of floral organ identity genes since the loss of SEP activity results in all flower organs developing as sepals [5]. Here we show that the combined action of the SEP genes, together with the A and B genes, is sufficient to convert leaves into petals.  相似文献   

13.
水稻花发育的分子生物学研究进展   总被引:8,自引:0,他引:8  
罗琼  朱立煌 《遗传》2002,24(1):87-93
水稻是世界上最重要的粮食作为之一,也是单子叶植物发育生物学研究较理想的模式植物。水稻花器官还是粮食赖以形成的基础。对水稻花发育的研究已开始成为植物分子遗传学的一个新的焦点。近年来有关水稻花发育基因调控的研究已取得了长足的进展,本文从水稻花的诱导、花分生组织的形成和花器官的发育三个方面综述近年来国内外的研究进展。 Abstract:Rice (Oryza sativa L.) is not only one of the most important food crops in the world,but also a model plant for study of molecular developmental biology in monocots.In addition,the rice floral organs provide the basis for grain formation.Study of rice floral development has become a new focus of plant molecular genetics.Recently,notable progress has been made in study of gene regulation in rice floral development.In the review,genetic and molecular mechanisms of floral induction,floral meristem formation,and floral organ development in rice are summarized.  相似文献   

14.
The architecture of a flower is tightly linked to the way a plant pollinates, making it one of the most physiologically and ecologically important traits of angiosperms. Floral organ development is proposed to be governed by the activity of three different classes of organ identity genes (the ABC model), and the expression of those genes are regulated by a number of meristem identity genes. Here we use a transgenetic strategy to elucidate the role of one floral meristem identify gene,LEAFY (LFY), in the evolution of floral organogenesis of a self pollinatorIdahoa scapigera and a obligatory out-crosserLeavenworthia crassa in the mustard family, Brassicaceae. By introducing theLFY genes from these two types of pollination habit into the genetic model speciesArabidopsis thaliana, we provide evidence that changes inLFY influenced flower architecture probably by controlling the downstream organ identity genes.  相似文献   

15.
16.
林木花发育的基因调控   总被引:1,自引:0,他引:1  
花发育是林木生长发育过程中的重要阶段。林木的花发育分为开花诱导、花的发端和花器官发育3个阶段,是由多种基因参与的十分复杂的调控过程。本文对林木在花发育过程中的基因调控进行了综述,并对林木花发育领域的研究前景进行了展望。  相似文献   

17.
《Genomics》2021,113(6):3881-3894
Members of the REM (Reproductive Meristem) gene family are expressed primarily in reproductive meristems and floral organs. However, their evolution and their functional profiles in flower development remain poorly understood. Here, we performed genome-wide identification and evolutionary analysis of the REM gene family in Rosaceae. This family has been greatly expanded in rose (Rosa chinensis) compared to other species, primarily through tandem duplication. Expression analysis revealed that most RcREM genes are specifically expressed in reproductive organs and that their specific expression patterns are dramatically altered in rose plants with mutations affecting floral organs. Protein-protein interaction analysis indicated that RcREM14 interact with RcAP1 (one of the homology of A class genes in ABCDE model), highlighting the roles of RcREM genes in floral organ identity. Finally, co-expression network analysis indicated that RcREM genes are co-expressed with a high proportion of key genes that regulate flowering time, floral organ development, and cell proliferation and expansion in R. chinensis.  相似文献   

18.
Genetic aspects of floral fragrance in plants   总被引:1,自引:0,他引:1  
It is generally assumed that compounds are emitted from flowers in order to attract and guide pollinators. Due to the invisibility and the highly variable nature of floral scent, no efficient and reliable methods to screen for genetic variation have been developed. Moreover, no convenient plant model systems are available for flower scent studies. In the past decade, several floral fragrance-related genes have been cloned; the biosynthesis and metabolic engineering of floral volatiles have been studied with the development of biotechnology. This review summarizes the reported floral fragrance-related genes and the biosynthesis of floral scent compounds, introduces the origin of new modification enzymes for flower scent, compares different methods for floral fragrance-related gene cloning, and discusses the metabolic engineering of floral scent. Finally, the perspectives and prospects of research on floral fragrance are presented. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 4, pp. 437–446.  相似文献   

19.
Arabidopsis thaliana (L.) Heynh. has been used as a model system to investigate the regulatory genes that control and coordinate the determination, differentiation and morphogenesis of the floral meristem and floral organs. We show here that benzylaminopurine (BAP), a cytokinin, influences flower development inArabidopsis and induces partial phenocopies of known floral homeotic mutants. Application of BAP to wild-type inflorescences at three developmental stages results in: (i) increase in floral organ number; (ii) formation of abnormal floral organs and (iii) induction of secondary floral buds in the axils of sepals. These abnormalities resemble the phenotypes of mutants,clv1 (increase in organ number),ap1,ap2,ap3 (abnormal floral organs) andap1 (secondary floral buds in the axils of first-whorl organs). In addition, BAP induces secondary floral buds in the axils of perianth members ofapt2-6, ap3-1 andag mutants, and accentuates the phenotype of theapt2-1 mutant to resemble theapt2-6 mutant. These observations suggest that exogenous BAP suppresses the normal functioning of the genes for floral meristem identity and thereby affects flower development and the later stages of floral organ differentiation.Abbreviations BAP N6-benzylaminopurine - CK cytokinin  相似文献   

20.
At the beginning of the 1990s, a simple genetic model that explained flower development was presented based on Arabidopsis thaliana and Antirrhinum majus floral homeotic mutants. According to this model, which is a milestone in plant development studies, flower development can be explained by three classes of genes (A, B and C), each one controlling the identity of organs in two adjacent whorls. Intriguingly, more than 20 years later, there are still some unanswered questions, in particular regarding the universality of the class A-function genes. Class A genes are well characterised in A. thaliana, but so far no A mutants have been described in other plant species nor in Antirrhinum majus. Here, we retrace the story that led to the proposal of the ABC model focusing on the contribution of A. majus to this model. Although fewer groups are still using A. majus as a model system, this plant was a master contributor to our comprehension of the molecular networks controlling flower development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号