首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 259 毫秒
1.
对于非捕食 被捕食(食饵)生态系统,强弱物种之间存在一定的竞争影响.在不考虑栖息地毁坏的情况下,引进双向竞争机制,将Tilman的单向竞争模式推广为n集合种群双向竞争模型,并对6-集合种群的竞争动态进行了计算机模拟研究.结果表明,在平衡态,种群竞争共存的条件是其竞争能力与扩散能力呈现指数型负相关关系,竞争的结果使物种的强弱序列发生变化;物种竞争排除与共存受迁移扩散能力和竞争能力影响很大,在局域斑块上竞争排斥的集合种群在广域尺度上可以竞争共存,即逃亡共存.  相似文献   

2.
物种多样性对栖息地毁坏时间异质性的响应   总被引:1,自引:0,他引:1  
栖息地毁坏是物种多样性丧失最重要的因素之一.通过多物种竞争共存的非自治动力模型,利用香农多样性指数,研究并比较了不同结构集合种群群落的物种多样性对不同程度和不同速度的栖息地毁坏时间异质性的响应.结果表明:在栖息地瞬间毁坏下,物种多样性先快速下降,之后得到一定程度的恢复,最终在下降中走向平衡;在栖息地持续完全毁坏下,栖息地毁坏速度对物种多样性随累积栖息地毁坏率变化的影响,只有在最强物种多度 (q)较小时比较明显,而在q较大时较小;对于栖息地持续部分毁坏,栖息地毁坏速度只影响物种多样性振荡的幅度,而不影响其变化的最终结果,并且速度越快,物种多样性振荡幅度越大,越不利于群落的稳定.  相似文献   

3.
栖息地毁坏是物种多样性减少的首要因素之一, 因此研究物种演化对栖息地毁坏的响应是非常必要的。而栖息地的毁坏又有瞬间毁坏和持续毁坏两种, 以往对栖息地毁坏的研究集中在瞬间毁坏上, 而该文则是通过N种 竞争共存模型分析对比了物种演化对栖息地瞬间毁坏和持续毁坏的响应特征。研究发现 :不同性质的栖息地毁坏都会导致物种强弱关系的变化, 并非如通常所认为的强物种将免于遭受物种灭绝的威胁, 也不是强物种首先灭绝, 而是因集合种群结构的不同而异。在热带雨林群落, 瞬间毁坏下物种演化一般经历了强迫适应和恢复上升阶段, 而持续毁坏下物种得不到恢复, 只能持续衰退, 在较长一段时间内持续毁坏比瞬间毁坏更有利于物种的续存 ;而在温带森林群落, 瞬间毁坏下物种演化一般经历强迫适应, 恢复上升和准周期振荡, 最后平衡, 而持续毁坏下物种只能持续衰退, 出现了在栖息地持续毁坏率小于瞬间毁坏率时, 物种的栖息地占有率却小于瞬间毁坏时的占有率。  相似文献   

4.
集合种群具有与局域种群Allee效应相似的现象被称为似Allee效应.将似Allee效应引入2-竞争物种集合种群系统,建立了具有似Allee效应的2-物种集合种群演化动态模型.大量的数值模拟表明:(1)似Allee效应导致集合种群水平上两竞争物种构成的系统具有多个平衡态;(2)似Allee效应使竞争共存物种无法续存甚至全部灭绝,即使种群具有很高的初始斑块占有率,并且最终平衡态随初始斑块占有率变化而改变;(3)似Allee效应可能使竞争排斥物种共同灭绝,且效应越强,物种存活时间越短;但似Allee效应不会增强强物种对弱物种的排斥强度,反而可能使强物种变为弱物种,弱物种变为强物种,其具有与栖息地毁坏类似的影响种群竞争等级排序的作用;(4)似Allee效应对竞争集合种群续存是一个不稳定的干扰因素,微小的变化都将引起系统平衡态的剧变.但对于已经达到平衡态的集合种群系统,似Allee效应对强弱种群多度起到调节与制约的作用,有助于平衡态集合种群的稳定与共存,这一结论更完整的揭示了似Allee效应在竞争集合种群系统发展的不同阶段所起的不同作用.以上这些结论对物种保护及集合群落的管理具有重要的指导意义.  相似文献   

5.
基于栖息地恢复对群落不同种群演化影响的模拟   总被引:2,自引:2,他引:0  
通过建立基于栖息地恢复的多种群演化动力学模式,模拟了不同群落结构的不同物种种群的演化特点。模拟结果发现了两类灭绝机制,揭示了(1)小规模栖息地的恢复对群落中的弱小物种的影响是非常有限的,不会给弱小物种种群带来灭绝风险。大幅度的栖息地增加几乎使所有的物种种群都在最初数百年中内都有出现一定的增加,特别是竞争能力最强的物种,其幅度的增加最为显著,但次最强的物种种群可能会在千年左右灭绝。群落内幸存的种群将经历3个阶段迅速壮大(增加)阶段震荡阶段稳定阶段;(2)存在着协同现象,栖息地减少所导致种群的协同演化规律与栖息地恢复所导致的种群的演化规律两者之间既有共同点,又有不同点。毁坏是一种破坏,大规模的栖息地的恢复对已适应于破坏后新环境的某些物种也可能是一种威胁,这类似于生态入侵的初始阶段。  相似文献   

6.
集合种群动态对栖息地毁坏时空异质性的响应   总被引:3,自引:0,他引:3  
刘会玉  林振山  温腾 《生态学报》2007,27(9):3711-3717
栖息地毁坏既有时间异质性,也有空间异质性,而以往的研究往往只关注其中的一种。将两种不同的异质性共同引入到元胞自动机中,模拟了集合种群动态对栖息地毁坏时空异质性的响应。发现,在随机离散的栖息地毁坏下,由于物种的迁移繁殖力受栖息地毁坏的影响很大,迁移繁殖力弱而竞争力强的物种先灭绝。在连续的栖息地毁坏下,物种的迁移繁殖力受栖息地毁坏的影响较小,物种的灭绝由竞争力和迁移繁殖力共同决定:在有绝对优势种的群落里,种间竞争显著,弱物种先灭绝,而在没有绝对优势种的群落里,种间竞争较小,则以强物种先灭绝。因此,随机毁坏不利于强物种续存,而连续毁坏则不利于具有绝对优势种群的群落里的弱物种续存。在实际开发某一栖息地时,根据集合种群结构和被保护的对象采取相应的开发模式。  相似文献   

7.
集聚效应下的集合种群动力模式   总被引:1,自引:0,他引:1  
林振山  何亮 《生态学报》2010,30(19):5245-5252
引入种群集聚度和集聚效应的概念,通过建立物种的集聚效应模型,结合经典的Tilman集合种群模式,创建了集聚效应下的集合种群动力模式。通过大量的数值模拟分析栖息地未毁坏下的集合种群演化规律与集聚效应的关系,得到:(1)即使生境没有毁坏,种群的集聚效应也会影响种群的演化。(2)集合种群系统中不同种群对集聚效应反应有异同,相同点是各种群都要经历一段准周期波动才达到平衡态。不同点是不同种群对集聚效应反应的强度不一致,竞争能力越强的种群准周期波动的振幅越大,频率越低。竞争能力越弱的种群准周期波动的振幅越小,频率越高。(3)不同的群落对集聚效应的响应也不一致。优势种群相对明显的群落对集聚效应的响应幅度相对较小。(4)在优势种群明显的群落中,集聚效应对弱物种非常不利,弱物种很有可能由于集聚效应而灭绝。(5)群落或n集合种群里的各种群的集聚效应和建群种(或最优势种)的强弱是决定景观生态序的最为重要的2个因素。(6)每个物种对不同的不适集聚程度的响应不一致。不适集聚程度越大,物种演化波动幅度越大,频率越高。  相似文献   

8.
栖息地毁坏与动物物种灭绝关系的模拟研究   总被引:28,自引:13,他引:15  
林振山  汪曙光 《生态学报》2002,22(4):535-540
利用多个物种共存模式模拟了不同情况下的不同动物种群演化的动力学特性,研究结果表明:(1)由于栖息地的毁坏所导致的动手的种灭绝是依赖于对物种死亡率和有关平衡态的假设的,不同的假设下,既使栖息地的破坏率相同,灭绝的物种可能是竞争能力最强的若干物种,也可能是竞争能力相对较弱的若干物种,既不象传统的物种进化理论所认为的必是弱的物种先灭绝,也不象Tilman等人所认为的一定是最强的若干物种先灭绝;(2)如果弱的物种具有较高的平均死亡率,则当栖息地受到一定的毁坏时,将有较多强的物种灭绝,而且物种灭绝时间将大大缩短;(3)在物种死亡率不变的情形下,物种在未受毁坏栖息地上的平衡态和大占有率pl^0,将有利于物种的生存。  相似文献   

9.
种群竞争是影响生态系统演化的莺要生态过程之一。本文是在徐彩琳和Tilman研究工作的基础上,将竞争系数引入集合种群动力模式,建立了集合种群之间竞争的数学模型,并对5-集合种群的竞争动态进行了计算机模拟研究。结果表明:种群竞争排除与共存受迁移扩散能力和竞争能力影响很大,排除原理在理论上是存在的,在广域集合种群和实际中物种是竞争共存的.共存的条件是其竞争能力与扩散能力呈非线性负相关关系,竞争的结果使物种的强弱序列发生变化。  相似文献   

10.
人类活动所引起的栖息地毁坏已成为当前物种多样性丧失的最主要的原因之一。空间显含模型相对于空间隐含模型来说,更加接近于现实,因此,通过元胞自动机,模拟了物种多样性对万年、千年、百年时间尺度人类活动所引起的栖息地毁坏的响应。研究结果表明:万年时间尺度上,物种是由强到弱的灭绝;而在千年时间尺度上,物种灭绝的序受集合种群结构的影响较大;在百年时间尺度上。物种由于栖息地毁坏过于剧烈和迅速,来不及作出响应。在栖息地完全毁坏时集体灭绝。因此,物种灭绝序不只是受竞争-侵占均衡机制的影响,还受不同时间尺度(不同速率)栖息地毁坏的影响。以及集合种群结构的影响。  相似文献   

11.
Patch occupancy theory predicts that a trade-off between competition and dispersal should lead to regional coexistence of competing species. Empirical investigations, however, find local coexistence of superior and inferior competitors, an outcome that cannot be explained within the patch occupancy framework because of the decoupling of local and spatial dynamics. We develop two-patch metapopulation models that explicitly consider the interaction between competition and dispersal. We show that a dispersal-competition trade-off can lead to local coexistence provided the inferior competitor is superior at colonizing empty patches as well as immigrating among occupied patches. Immigration from patches that the superior competitor cannot colonize rescues the inferior competitor from extinction in patches that both species colonize. Too much immigration, however, can be detrimental to coexistence. When competitive asymmetry between species is high, local coexistence is possible only if the dispersal rate of the inferior competitor occurs below a critical threshold. If competing species have comparable colonization abilities and the environment is otherwise spatially homogeneous, a superior ability to immigrate among occupied patches cannot prevent exclusion of the inferior competitor. If, however, biotic or abiotic factors create spatial heterogeneity in competitive rankings across the landscape, local coexistence can occur even in the absence of a dispersal-competition trade-off. In fact, coexistence requires that the dispersal rate of the overall inferior competitor not exceed a critical threshold. Explicit consideration of how dispersal modifies local competitive interactions shifts the focus from the patch occupancy approach with its emphasis on extinction-colonization dynamics to the realm of source-sink dynamics. The key to coexistence in this framework is spatial variance in fitness. Unlike in the patch occupancy framework, high rates of dispersal can undermine coexistence, and hence diversity, by reducing spatial variance in fitness.  相似文献   

12.
Population size dependence, competitive coexistence and habitat destruction   总被引:3,自引:0,他引:3  
1. Spatial dynamics can lead to coexistence of competing species even with strong asymmetric competition under the assumption that the inferior competitor is a better colonizer given equal rates of extinction. Patterns of habitat fragmentation may alter competitive coexistence under this assumption.
2. Numerical models were developed to test for the previously ignored effect of population size on competitive exclusion and on extinction rates for coexistence of competing species. These models neglect spatial arrangement.
3. Cellular automata were developed to test the effect of population size on competitive coexistence of two species, given that the inferior competitor is a better colonizer. The cellular automata in the present study were stochastic in that they were based upon colonization and extinction probabilities rather than deterministic rules.
4. The effect of population size on competitive exclusion at the local scale was found to have little consequence for the coexistence of competitors at the metapopulation (or landscape) scale. In contrast, population size effects on extinction at the local scale led to much reduced landscape scale coexistence compared to simulations not including localized population size effects on extinction, especially in the cellular automata models. Spatially explicit dynamics of the cellular automata vs. deterministic rates of the numerical model resulted in decreased survival of both species. One important finding is that superior competitors that are widespread can become extinct before less common inferior competitors because of limited colonization.
5. These results suggest that population size–extinction relationships may play a large role in competitive coexistence. These results and differences are used in a model structure to help reconcile previous spatially explicit studies which provided apparently different results concerning coexistence of competing species.  相似文献   

13.
Models of metapopulations have often ignored local community dynamics and spatial heterogeneity among patches. However, persistence of a community as a whole depends both on the local interactions and the rates of dispersal between patches. We study a mathematical model of a metacommunity with two consumers exploiting a resource in a habitat of two different patches. They are the exploitative competitors or the competing predators indirectly competing through depletion of the shared resource. We show that they can potentially coexist, even if one species is sufficiently inferior to be driven extinct in both patches in isolation, when these patches are connected through diffusive dispersal. Thus, dispersal can mediate coexistence of competitors, even if both patches are local sinks for one species because of the interactions with the other species. The spatial asynchrony and the competition-colonization trade-off are usual mechanisms to facilitate regional coexistence. However, in our case, two consumers can coexist either in synchronous oscillation between patches or in equilibrium. The higher dispersal rate of the superior prompts rather than suppresses the inferior. Since differences in the carrying capacity between two patches generate flows from the more productive patch to the less productive, loss of the superior by emigration relaxes competition in the former, and depletion of the resource by subsidized consumers decouples the local community in the latter.  相似文献   

14.
The interaction between two species that do not compete for resources but share a common natural enemy is known as apparent competition. In the absence of other limiting factors, such three-species interactions are impermanent, with one species being excluded from the assemblage by the natural enemy. Here, the effects of metapopulation structure are explored in a system of two hosts that experience apparent competition through a shared parasitoid. A coupled-map lattice model is developed and used to explore species coexistence and patterns of patch occupancy at the metapopulation scale. Linking local and regional dynamics favours coexistence by uncoupling the dynamics of the three species in space. Coexistence is promoted by the inferior species being either a fugitive or a sedentary species. The occurrence of these two mutually exclusive mechanisms of coexistence is influenced by the relative dispersal of the inferior apparent competitor.  相似文献   

15.
A variety of models have shown that spatial dynamics and small-scale endogenous heterogeneity (e.g., forest gaps or local resource depletion zones) can change the rate and outcome of competition in communities of plants or other sessile organisms. However, the theory appears complicated and hard to connect to real systems. We synthesize results from three different kinds of models: interacting particle systems, moment equations for spatial point processes, and metapopulation or patch models. Studies using all three frameworks agree that spatial dynamics need not enhance coexistence nor slow down dynamics; their effects depend on the underlying competitive interactions in the community. When similar species would coexist in a nonspatial habitat, endogenous spatial structure inhibits coexistence and slows dynamics. When a dominant species disperses poorly and the weaker species has higher fecundity or better dispersal, competition-colonization trade-offs enhance coexistence. Even when species have equal dispersal and per-generation fecundity, spatial successional niches where the weaker and faster-growing species can rapidly exploit ephemeral local resources can enhance coexistence. When interspecific competition is strong, spatial dynamics reduce founder control at large scales and short dispersal becomes advantageous. We describe a series of empirical tests to detect and distinguish among the suggested scenarios.  相似文献   

16.
Although metapopulation dynamics have become the focus of considerable theoretical research, little attention has been paid to its role when examining the coexistence of species. When two or more species live in the same patch network, interspecific interactions may affect their dispersal, colonization and extinction rates, and it may be possible to incorporate competition affecting these parameters in metapopulation models. Here, we extend the territorial occupancy model proposed by Lande to competing species. Our model estimates an equilibrium proportion of habitat occupancy as a function of life‐history parameters, dispersal behavior, habitat suitability and interspecific interactions. Moreover, it could prove to be useful as a tool in the assessment of potential management decisions. We apply the model to the golden Aquila chrysaetos and the Bonelli's eagle Hieraaetus fasciatus, two territorial raptors that coexist in the Mediterranean region, sharing food and nesting habitats. Over the last twenty years, while the golden eagle has maintained and, in some cases, increased its breeding numbers, Bonelli's eagle has suffered a marked decline, with many territories abandoned by the latter now occupied by the former. This suggests that the dynamics of these species could be influenced by interspecific competition. The model identified the relative importance of competition (stable equilibrium that allows long‐term coexistence) and predicted that, when habitat overlap is slight as in the study area, intraspecific dynamics are much more important for the persistence of each species than interspecific ones. Our results suggest that the improvement of territorial bird survival and productivity are the most urgently needed actions to be undertaken in the case of the golden eagle, while for Bonelli's eagle efforts should be focused on improving territorial and non‐territorial bird survival. As habitat conservation measures, the proportion of suitable exclusive habitat should be increased for both species.  相似文献   

17.
The Levins model is a simple and widely used metapopulation model that describes temporal changes in the regional abundance of a single species and has increasingly been applied to metacommunity contexts including multiple species. Although a fundamental assumption commonly made when using the model is that species randomly move between habitat patches, most organisms exhibit habitat preference in reality. A method of incorporating habitat preference (directed dispersal) into the Levins metapopulation model was developed in a previous study. In the current study, we extended the approach to explore two‐species metacommunity dynamics (i.e. competition and predation) mediated by habitat preference. Our results theoretically revealed that coexistence of competing metapopulations requires conspecific aggregation and heterospecific segregation whereas the conspecific segregation of prey and effective avoidance of unsuitable prey‐free patches are crucial for persistence of predator metapopulations. In addition, we qualitatively and quantitatively demonstrated the effect of habitat preference on the outcomes of interspecific interactions. The present study opens a new research avenue in metacommunity ecology in complex nature and contributes to improved landscape management for the conservation of species (e.g. territorial and group‐living animals) and biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号