首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一株Ⅱ型甲烷氧化菌中甲烷单加氧酶基因和16S rDNA的分析   总被引:1,自引:0,他引:1  
[目的]利用分子生物学方法对-株甲烷氧化菌Methylosinus trichosporium IMV 3011中的16S rDNA和溶解性甲烷单加氧酶基因序列进行分析并探索其进化分类地位.[方法]利用基因数据库已有的基因序列信息,设计PCR扩增引物和基因测序引物,对溶解性甲烷单加氧酶基因和16s rDNA进行扩增和测序,并进行溶解性甲烷单加氧酶的6个基因和氨基酸序列与同类菌株的相应序列进行联配分析.[结果]获得了全长为5319 bp甲烷单加氧酶基因序列和长度为1290 bp的16S rDNA序列.该菌株与Methylosinus trichosporium OB3b中相对应基因的同一性是99.0%~82.7%,MMOX氨基酸序列的同一性为99.4%~81.8%,相似性为99.8%~89.2%.基于以上分析表明MMOX组分有很高的序列保守性,特别是在活性中心区域.[结论]菌株IMV3011属于甲基弯菌属,最近似的菌株是Methylosinus trichosporium OB3b.  相似文献   

2.
The viable but non-culturable state in the human pathogen Vibrio vulnificus   总被引:7,自引:0,他引:7  
Abstract Genes encoding paniculate methane monooxygenase and ammonia monooxygenase share high sequence identity. Degenerate oligonucleotide primers were designed, based on regions of shared amino acid sequence between the 27-kDa polypeptides, which are believed to contain the active sites, of particulate methane monooxygenase and ammonia monooxygenase. A 525-bp internal DNA fragment of the genes encoding these polypeptides ( pmoA and amoA ) from a variety of methanotrophic and nitrifying bacteria was amplified by PCR, cloned and sequenced. Representatives of each of the phylogenetic groups of both methanotrophs (α- and γ-Proteobacteria) and ammonia-oxidizing nitrifying bacteria (β-and y-Proteobacteria) were included. Analysis of the predicted amino acid sequences of these genes revealed strong conservation of both primary and secondary structure. Nitrosococcus oceanus AmoA showed higher identity to PmoA sequences from other members of the γ-Proteobacteria than to AmoA sequences. These results suggest that the particulate methane monooxygenase and ammonia monooxygenase are evolutionarily related enzymes despite their different physiological roles in these bacteria.  相似文献   

3.
Based on structural, biochemical, and genetic data, the soluble diiron monooxygenases can be divided into four groups: the soluble methane monooxygenases, the Amo alkene monooxygenase of Rhodococcus corallinus B-276, the phenol hydroxylases, and the four-component alkene/aromatic monooxygenases. The limited phylogenetic distribution of these enzymes among bacteria, together with available genetic evidence, indicates that they have been spread largely through horizontal gene transfer. Phylogenetic analyses reveal that the alpha- and beta-oxygenase subunits are paralogous proteins and were derived from an ancient gene duplication of a carboxylate-bridged diiron protein, with subsequent divergence yielding a catalytic alpha-oxygenase subunit and a structural beta-oxygenase subunit. The oxidoreductase and ferredoxin components of these enzymes are likely to have been acquired by horizontal transfer from ancestors common to unrelated diiron and Rieske center oxygenases and other enzymes. The cumulative results of phylogenetic reconstructions suggest that the alkene/aromatic monooxygenases diverged first from the last common ancestor for these enzymes, followed by the phenol hydroxylases, Amo alkene monooxygenase, and methane monooxygenases.  相似文献   

4.
Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide‐range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of protein classification are based on the canonical paradigm that attributes proteins’ function to their three‐dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes.  相似文献   

5.
Li Z  Rupasinghe SG  Schuler MA  Nair SK 《Proteins》2011,79(6):1728-1738
The lipoglycopeptide antibiotic teicoplanin has proven efficacy against gram‐positive pathogens. Teicoplanin is distinguished from the vancomycin‐type glycopeptide antibiotics, by the presence of an additional cross‐link between the aromatic amino acids 1 and 3 that is catalyzed by the cytochrome P450 monooxygenase Orf6* (CYP165D3). As a goal towards understanding the mechanism of this phenol‐coupling reaction, we have characterized recombinant Orf6* and determined its crystal structure to 2.2‐Å resolution. Although the structure of Orf6* reveals the core fold common to other P450 monooxygenases, there are subtle differences in the disposition of secondary structure elements near the active site cavity necessary to accommodate its complex heptapeptide substrate. Specifically, the orientation of the F and G helices in Orf6* results in a more closed active site than found in the vancomycin oxidative enzymes OxyB and OxyC. In addition, Met226 in the I helix replaces the more typical Gly/Ala residue that is positioned above the heme porphyrin ring, where it forms a hydrogen bond with a heme iron‐bound water molecule. Sequence comparisons with other phenol‐coupling P450 monooxygenases suggest that Met226 plays a role in determining the substrate regiospecificity of Orf6*. These features provide further insights into the mechanism of the cross‐linking mechanisms that occur during glycopeptide antibiotics biosynthesis. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

6.
Primary structure of tyrosinase from Streptomyces glaucescens   总被引:13,自引:0,他引:13  
M Huber  G Hintermann  K Lerch 《Biochemistry》1985,24(22):6038-6044
The complete amino acid sequence of Streptomyces glaucescens tyrosinase is reported. The molecule consists of 273 amino acids and has a Mr of 30 900 including two copper atoms. The primary structure was determined by a combination of amino acid and DNA sequence analysis. Peptide sequence information was derived from the cyanogen bromide, tryptic, and thermolytic fragments of apotyrosinase by automated Edman degradation and aminopeptidase M and carboxypeptidase C digestions. The nucleotide sequence of the tyrosinase gene cloned into the PvuII site of pBR322 was determined. The enzyme contains no apparent leader peptide despite the fact that it is secreted into the culture medium. As observed for a number of different Streptomyces genes, the tyrosinase gene shows a strong preference (97%) for codons ending in G or C. A comparison of the amino acid sequence of Streptomyces glaucescens tyrosinase with that of Neurospora crassa tyrosinase reveals an overall sequence homology of only 24.2%. However, the sequence homology is much higher in those regions thought to be involved in metal binding of the binuclear active site copper of this monooxygenase.  相似文献   

7.
The ammonia monooxygenase (AMO)/particulate methane monooxygenase (pMMO) superfamily is a diverse group of membrane‐bound enzymes of which only pMMO has been characterized on the molecular level. The pMMO active site is believed to reside in the soluble N‐terminal region of the pmoB subunit. To understand the degree of structural conservation within this superfamily, the crystal structure of the corresponding domain of an archaeal amoB subunit from Nitrosocaldus yellowstonii has been determined to 1.8 Å resolution. The structure reveals a remarkable conservation of overall fold and copper binding site location as well as several notable differences that may have implications for function and stability. Proteins 2014; 82:2263–2267. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Steroid monooxygenase (STMO) from Rhodococcus rhodochrous catalyzes the Baeyer-Villiger conversion of progesterone into progesterone acetate using FAD as prosthetic group and NADPH as reducing cofactor. The enzyme shares high sequence similarity with well characterized Baeyer-Villiger monooxygenases, including phenylacetone monooxygenase and cyclohexanone monooxygenase. The comparative biochemical and structural analysis of STMO can be particularly insightful with regard to the understanding of the substrate-specificity properties of Baeyer-Villiger monooxygenases that are emerging as promising tools in biocatalytic applications and as targets for prodrug activation. The crystal structures of STMO in the native, NADP(+)-bound, and two mutant forms reveal structural details on this microbial steroid-degrading enzyme. The binding of the nicotinamide ring of NADP(+) is shifted with respect to the flavin compared with that observed in other monooxygenases of the same class. This finding fully supports the idea that NADP(H) adopts various positions during the catalytic cycle to perform its multiple functions in catalysis. The active site closely resembles that of phenylacetone monooxygenase. This observation led us to discover that STMO is capable of acting also on phenylacetone, which implies an impressive level of substrate promiscuity. The investigation of six mutants that target residues on the surface of the substrate-binding site reveals that enzymatic conversions of both progesterone and phenylacetone are largely insensitive to relatively drastic amino acid changes, with some mutants even displaying enhanced activity on progesterone. These features possibly reflect the fact that these enzymes are continuously evolving to acquire new activities, depending on the emerging availabilities of new compounds in the living environment.  相似文献   

9.
Most bacteria have developed a hemoprotein degradation system to acquire iron from their hosts. Bacillus subtilis HmoB, a heme monooxygenase, is involved in the degradation of heme and subsequent release of iron. HmoB contains a C-terminal ABM domain, which is similar in sequence and structure to other heme monooxygenases. Heme degradation assay showed that highly conserved residues (N70, W128, and H138) near the heme-binding site were critical for activity of HmoB. However, HmoB was shown to be different from other bacterial heme oxygenases due to its longer N-terminal region and formation of a biological monomer instead of a dimer. The degradation product of B. subtilis HmoB was identified as staphylobilin from mass spectrometric analysis of the product and release of formaldehyde during degradation reaction.  相似文献   

10.
The purification method of particulate methane monooxygenase (pMMO) from Methylosinus trichosporium OB3b was improved, and purified pMMO retained its activity with duroquinol as a reductant. n-Dodecyl-,d-maltoside was used for the solubilization of pMMO and Brij 58 was used for the purification for anion exchange chromatography. Compared to the original pMMO activity in the membrane fraction, 88% of the activity was now retained in the purified material. The purified pMMO monomer (94 kDa) contained only two copper atoms and did not contain iron. Both copper ions showed only a typical type II copper EPR signal with a superhyperfine structure at the g region, indicating that the type II copper ions play an important role as the active site of methane hydroxylation in pMMO.  相似文献   

11.
The genes encoding the six polypeptide components of the alkene monooxygenase from Xanthobacter strain Py2 (Xamo) have been located on a 4.9-kb fragment of chromosomal DNA previously cloned in cosmid pNY2. Sequencing and analysis of the predicted amino acid sequences indicate that the components of Xamo are homologous to those of the aromatic monooxygenases, toluene 2-, 3-, and 4-monooxygenase and benzene monooxygenase, and that the gene order is identical. The genes and predicted polypeptides are aamA, encoding the 497-residue oxygenase alpha-subunit (XamoA); aamB, encoding the 88-residue oxygenase gamma-subunit (XamoB); aamC, encoding the 122-residue ferredoxin (XamoC); aamD, encoding the 101-residue coupling or effector protein (XamoD); aamE, encoding the 341-residue oxygenase beta-subunit (XamoE); and aamF, encoding the 327-residue reductase (XamoF). A sequence with >60% concurrence with the consensus sequence of sigma54 (RpoN)-dependent promoters was identified upstream of the aamA gene. Detailed comparison of XamoA with the oxygenase alpha-subunits from aromatic monooxygenases, phenol hydroxylases, methane monooxygenase, and the alkene monooxygenase from Rhodococcus rhodochrous B276 showed that, despite the overall similarity to the aromatic monooxygenases, XamoA has some distinctive characteristics of the oxygenases which oxidize aliphatic, and particularly alkene, substrates. On the basis of the similarity between Xamo and the aromatic monooxygenases, Xanthobacter strain Py2 was tested and shown to oxidize benzene, toluene, and phenol, while the alkene monooxygenase-negative mutants NZ1 and NZ2 did not. Benzene was oxidized to phenol, which accumulated transiently before being further oxidized. Toluene was oxidized to a mixture of o-, m-, and p-cresols (39.8, 18, and 41.7%, respectively) and a small amount (0.5%) of benzyl alcohol, none of which were further oxidized. In growth studies Xanthobacter strain Py2 was found to grow on phenol and catechol but not on benzene or toluene; growth on phenol required a functional alkene monooxygenase. However, there is no evidence of genes encoding steps in the metabolism of catechol in the vicinity of the aam gene cluster. This suggests that the inducer specificity of the alkene monooxygenase may have evolved to benefit from the naturally broad substrate specificity of this class of monooxygenase and the ability of the host strain to grow on catechol.  相似文献   

12.
The enzyme NAD(P)H:flavin oxidoreductase (flavin reductase) catalyzes the reduction of soluble flavins by reduced pyridine nucleotides. In Escherichia coli it is part of a multienzyme system that reduces the Fe(III) center of ribonucleotide reductase to Fe(II) and thereby sets the stage for the generation by dioxygen of a free tyrosyl radical required for enzyme activity. Similar enzymes are known in other organisms and may more generally be involved in iron metabolism. We have now isolated the gene for the E. coli flavin reductase from a lambda gt11 library. After DNA sequencing we found an open reading frame coding for a polypeptide of 233 amino acids, with a molecular weight of 26,212 and with an N-terminal segment identical to that determined by direct Edman degradation. The coding sequence is preceded by a weak ribosome binding site centered 8 nucleotides from the start codon and by a promoterlike sequence centered at a distance of 83 nucleotides. In a Kohara library the gene hybridized to position 3680 on the physical map of E. coli. A bacterial strain that overproduced the enzyme approximately 100-fold was constructed. The translated amino acid sequence contained a potential pyridine nucleotide-binding site and showed 25% identity with the C-terminal part of one subunit (protein C) of methane monooxygenase from methanotropic bacteria that reduces the iron center of a second subunit (protein A) of the oxygenase by pyridine nucleotides.  相似文献   

13.
甲烷单加氧酶的催化性能和活性中心结构   总被引:3,自引:0,他引:3  
甲烷单加氧酶是甲烷利用细菌代谢甲烷过程中的重要酶系,它能够催化烷烃羟基化和烯烃环氧化反应;还能催化降解氯代烃类,可用于环境中氯代烃类化合物污染的治理,是具有广泛应用前景的生物催化剂.甲烷单加氧酶是含有μ-氧桥双核铁催化活性中心的蛋白,它的研究对分子氧的活化、化学催化剂的设计具有重要意义.文章介绍了甲烷单加氧酶催化性能和机理的最新研究进展.  相似文献   

14.
Soluble methane monooxygenase (sMMO) maximization studies were carried out as part of a larger effort directed towards the development and optimization of an aqueous phase, multistage, membrane bioreactor system for treatment of polluted groundwater. A modified version of the naphthalene oxidation assay was utilized to determine the effects of methane:oxygen ratio, nutrient supply, and supplementary carbon sources on maximizing and maintaining sMMO activity inMethylosinus trichosporium OB3b.Methylosinus trichosporium OB3b attained peak sMMO activity (275–300 nmol of naphthol formed h–1 mg of protein–1 at 25°C) in early stationary growth phase when grown in nitrate mineral salts (NMS) medium. With the onset of methane limitation however, sMMO activity rapidly declined. It was possible to define a simplified nitrate mineral salts (NMS) medium, containing nitrate, phosphate and a source of iron and magnesium, which allowed reasonably high growth rates (max 0.08 h–1) and growth yields (0.4–0.5 g cells/g CH4) and near maximal activities of sMMO. In long term batch culture incubations sMMO activity reached a stable plateau at approximately 45–50% of the initial peak level and this was maintained over several weeks. The addition of d-biotin, pyridoxine, and vitamin B12 (cyanocobalamin) increased the activity level of sMMO in actively growing methanotrophs by 25–75%. The addition of these growth factors to the simplified NMS medium was found to increase the plateau sMMO level in long term batch cultures up to 70% of the original peak activity.Abbreviations sMMO soluble methane monooxygenase - pMMO particulate methane monooxygenase - NMS nitrate mineral salts - TCE trichloroethene - NADH reduced nicotinamide adenine dinucleotide  相似文献   

15.
The results of the first systematical investigation into the aerobic methanotrophic communities inhabiting the bottom sediments of Lake Baikal have been reported. Use of the radioisotopic method revealed methane consumption in 12 10- to 50-cm-long sediment cores. The maximum methane consumption rates (495–737 µl/(dm3 day) were recorded in sediments in the regions of hydrothermal vents and oil and gas occurrence. Methane consumption was most active in the surface layers of the sediments (0–4 cm); it decreased with the sediment depth and became negligible or absent at depths below 20 cm. The number of methanotrophic bacteria usually ranged from 100 to 1000 cells/cm3 of sediment and reached 1 million cells/cm3 in the regions of oil and gas occurrence. The seventeen enrichment cultures obtained were represented mainly by morphotype II methanotrophs. Phylogenetic analysis of the enrichment cultures in terms of the amino acid sequence of the α subunit of the membrane-bound methane monooxygenase (MMO) revealed the predominance of methanotrophs of the genus Methylocystis. The results obtained suggest the presence of an active aerobic methanotrophic community in Lake Baikal.__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 562–571.Original Russian Text Copyright © 2005 by Gainutdinova, Eshinimaev, Tsyrenzhapova, Dagurova, Suzina, Khmelenina, Namsaraev, Trotsenko.  相似文献   

16.
Summary Tyrosinase is a copper containing monooxygenase catalyzing the formation of melanin pigments and other polyphenolic compounds from various phenols. This review deals with the recent progress on the molecular structure of the enzyme from Neurospora crassa and the unique features of the binuclear active site copper complex involved in the activation of molecular oxygen and the binding of substrates. The results of the spectroscopic properties of Neurospora tyrosinase will also be discussed in the light of the structural similarity of the copper complex in the oxygen binding hemocyanins.  相似文献   

17.
The FMNH(2)-dependent alkanesulfonate monooxygenase SsuD catalyzes the conversion of alkanesulfonates to the corresponding aldehyde and sulfite. The enzyme allows Escherichia coli to use a wide range of alkanesulfonates as sulfur sources for growth when sulfate or cysteine are not available. The structure of SsuD was solved using the multiwavelength anomalous dispersion method from only four ordered selenium sites per asymmetric unit (one site per 20,800 Da). The final model includes 328 of 380 amino acid residues and was refined to an R-factor of 23.5% (R(free)=27.5%) at 2.3A resolution. The X-ray crystal structure of SsuD shows a homotetrameric state for the enzyme, each subunit being composed of a TIM-barrel fold enlarged by four insertion regions that contribute to intersubunit interactions. SsuD is structurally related to a bacterial luciferase and an archaeal coenzyme F(420)-dependent reductase in spite of a low level of sequence identity with these enzymes. The structural relationship is not limited to the beta-barrel region; it includes most but not all extension regions and shows distinct properties for the SsuD TIM-barrel. A likely substrate-binding site is postulated on the basis of the SsuD structure presented here, results from earlier biochemical studies, and structure relatedness to bacterial luciferase. SsuD is related to other FMNH(2)-dependent monooxygenases that show distant sequence relationship to luciferase. Thus, the structure reported here provides a model for enzymes belonging to this family and suggests that they might all fold as TIM-barrel proteins.  相似文献   

18.
Methylosinus trichosporium OB3b biosynthesizes a broad specificity soluble methane monooxygenase that rapidly oxidizes trichloroethylene (TCE). The selective expression of the soluble methane monooxygenase was followed in vivo by a rapid colorimetric assay. Naphthalene was oxidized by purified soluble methane monooxygenase or by cells grown in copper-deficient media to a mixture of 1-naphthol and 2-naphthol. The naphthols were detected by reaction with tetrazotized o-dianisidine to form purple diazo dyes with large molar absorptivities. The rate of color formation with the rapid assay correlated with the velocity of TCE oxidation that was determined by gas chromatography. Both assays were used to optimize conditions for TCE oxidation by M. trichosporium OB3b and to test several methanotrophic bacteria for the ability to oxidize TCE and naphthalene.Abbreviations A600 absorbance due to cell density measured at 600 nm - HPLC high pressure liquid chromatography - NADH reduced nicotinamide adenine dinucleotide - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - sMMO soluble methane monooxygenase - TCE trichloroethylene  相似文献   

19.
The NADPH-dependent conversion of amino acids to their aldoximes is an initial step in glucosinolate biosynthesis. A number of microsomal aldoxime-forming monooxygenase activities were detected in leaves from a variety of glucosi-nolate-containing species, whereas barley, bean and tobacco leaves did not contain any such activities. The substrates for these monooxygenases in each species largely correlated with the spectrum of glucosinolates found in that species. No activity was detected that metabolized homomethionine (supposed precursor of 2-propenylglucosinolate [sinigrin]), even in species where sinigrin was the major glucosinolate. In Sinapis species containing hydroxybenzylglucosinolate (sinalbin), activity with L-Tyr was detected, whereas Brassica species containing sinalbin had no such activity. However, these Brassicas did contain an L-Phe monooxygenase activity. Partial characterization of the monooxygenases indicated that in Brassica species, Nasturtium officinalis and Raphanus sativus these resembled the flavin-linked monooxygenases previously found in oilseed rape (Brassica napus) and Chinese cabbage (Brassica campestris). The L-Tyr-dependent activity in Sinapis species, and the L-Phe-dependent activity in Tropacolum majus, had characteristics of cytochrome P450-type enzymes. No similarity was found with any other known amino acid metabolizing enzymes (including decarboxylases, amino acid oxidases and diamine/polyamine oxidases).  相似文献   

20.
The first steps in the biosynthesis of glucosinolates and indole-3-acetic acid (IAA) in oilseed rape (Brassica napus L.) and Chinese cabbage (Brassica campestris ssp. pekinensis) involve the formation of aldoximes. In rape the formation of aldoximes from chain-extended amino acids, for aromatic and aliphatic glucosinolate biosynthesis, is catalysed by microsomal flavin-containing monooxygenases. The formation of indole-3-aldoxime from l-tryptophan, the potential precursor of both indole-3-acetic acid and indolyl-glucosinolates, is catalysed by several microsomal peroxidases. The biosynthesis of glucosinolates and indole-3-acetic acid was shown to be under developmental control in oilseed rape and Chinese cabbage. No monooxygenase activities were detected in cotyledons or old leaves of either species. The highest monooxygenase activities were found in young expanding leaves; as the leaves reached full expansion and matured the activities decreased rapidly. The indole-aldoxime-forming activity was found in all of the tissues analysed, but there was also a clear decrease in foliar activity with maturity in leaves of rape and Chinese cabbage. Partial characterisation of the Chinese cabbage monooxygenases showed that they have essentially identical properties to the previously characterised rape enzymes; they are not cytochrome P450-type enzymes, but resemble flavin-containing monooxygenases. No monooxygenase inhibitors were detected in microsomes prepared from either cotyledons or old leaves.Abbreviations DHMet dihomomethionine - FMO flavin-containing monooxygenase - HPhe homophenylalanine - IAA indole-3-acetic acid - l-Phe l-phenylalanine - l-Trp l-tryptophan - MO monooxygenase - IAALD indole-3-acetaldehyde - IAOX indole-3-aldoxime - THMet trihomomethionine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号