首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
2.
E-selectin plays a role in the binding and extravasation of leukocytes from the bloodstream. The E-selectin gene is rapidly and transiently expressed by endothelial cells activated by inflammatory stimuli. Despite the identification of factors critical for cytokine-induced activation of the E-selectin promoter, little is known about the mechanisms that restrict the gene expression to endothelial cells. We used in vivo approaches to characterize the E-selectin promoter in primary cultures of human umbilical vein endothelial cells and umbilical artery smooth muscle cells. In endothelial cells specifically, nucleosomes are remodeled after tumor necrosis factor (TNF) alpha induction. Chromatin immunoprecipitation analysis demonstrated the binding of the p65 (RelA) component of nuclear factor-kappa B (NF-kappa B) to the endogenous E-selectin promoter after TNFalpha stimulation along with IkappaB kinase alpha. Multiple coactivators, including p300, steroid receptor coactivator-1, and p300/cAMP-response element-binding protein (CREB)-binding protein (CBP)-associated factor localize differentially to the E-selectin promoter. Additionally, TNFalpha induced localized histone hyperacetylation, phosphorylation, and methylation in the E-selectin gene specifically in endothelial cells. Post-induction repression of E-selectin expression is associated with recruitment of multiple deacetylases. Collectively, these studies suggest a model for the selective induction of the E-selectin gene in which the core promoter chromatin architecture is specifically modified in endothelial cells.  相似文献   

3.
Moon EY  Lee JH  Lee JW  Song JH  Pyo S 《Cellular signalling》2011,23(9):1479-1488
B-cell activating factor (BAFF) plays a role for the maturation and the maintenance of B cells. Lipopolysaccharide (LPS) activates toll-like receptor 4 (TLR4)-dependent signal transduction, which resulted in BAFF expression through nuclear factor kappa B (NF-κB) activation. Here, we investigated whether BAFF expression could be regulated by p65 phosphorylation through the production of reactive oxygen species (ROS) or cyclic AMP (cAMP) in Raw264.7 murine macrophages. mBAFF expression was reduced by ROS scavengers and it was increased by dibutyl-cAMP, a cAMP analogue. mBAFF expression and mBAFF promoter activity were increased by co-transfection of p65 but they were reduced by p65-small interference (si) RNA. Serine (Ser) 276 phosphorylation of p65 was increased by LPS-mediated PKA activation or by the treatment with forskolin, adenylate cyclase activator and dibutyl-cAMP. In contrast, p65 phosphorylation at Ser276 was decreased by ROS scavengers. H2O2 increased intracellular cAMP concentration, significantly. While no increase in p65 phosphorylation at Ser276 was detected by the treatment with H2O2, CREB and p65 phosphorylation at Ser133 and Ser536 was observed, respectively. It implicates that p65 phosphorylation at Ser276 is independent of ROS-induced cAMP production. As another cAMP effector protein was cAMP-responsive guanine nucleotide exchange factor (Epac), a Rap GDP exchange factor, NF-κB was activated by the treatment with 8-(4-chloro-phenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (CPT) that is an activator to Epac. Epac1-mediated Rap1 was activated by the treatment with H2O2 but it was inhibited by ROS scavengers. CPT induced p65 phosphorylation at both Ser276 and Ser536. CPT also increased not only mBAFF expression but mBAFF promoter activity. Data demonstrate that TLR4-mediated mBAFF expression was resulted from the crosstalk of p65 phosphorylation at Ser536 and Ser276 through ROS- and/or cAMP-mediated signal transduction. It suggests for the first time that ROS/Epac1-mediated Rap1/NF-κB pathway could be required for BAFF expression.  相似文献   

4.
5.
In obesity, levels of tumor necrosis-factor α (TNFα) are well known to be elevated in adipose tissues or serum, and a high-fat diet (HFD) reportedly increases TNFα expression in the hypothalamus. The expression levels of hypothalamic protein tyrosine phosphatase 1B (PTP1B), a negative regulator of leptin and insulin signaling, are also elevated by HFD, and several lines of evidence support a relationship between TNFα and PTP1B. It remains unclear however how TNFα acts locally in the hypothalamus to regulate hypothalamic PTP1B expression and activity. In this study, we examined whether TNFα can regulate PTP1B expression and activity using rat hypothalamic organotypic cultures. Incubation of cultures with TNFα resulted in increases in mRNA expression, protein levels and activity of PTP1B in a dose- and time-dependent manner, respectively compared with controls. TNFα-induced PTP1B protein levels were not influenced by co-incubation with the sodium channel blocker tetrodotoxin, indicating that the action of TNFα is independent of action potentials. TNFα also increased phosphorylation of p65, a subunit of nuclear factor-κB (NFκB), in a dose- and time-dependent manner. While incubation with inhibitors of NFκB did not affect basal levels of either p65 phosphorylation or PTP1B expression, it markedly suppressed both TNFα-induced p65 phosphorylation and PTP1B expression to almost basal levels. These data suggest that TNFα acts on the hypothalamus to increase hypothalamic PTP1B expression and activity via the NFκB pathway, and that TNFα-mediated induction of NFκB in the hypothalamus may cause leptin and insulin resistance in the hypothalamus by increasing hypothalamic PTP1B activity.  相似文献   

6.
The lymphatic endothelium plays an important role in the maintenance of tissue fluid homeostasis. It also participates in the pathogenesis of several inflammatory diseases. However, little is known about the underlying mechanisms by which lymphatic endothelial cell responds to inflammatory stimuli. In this study, we explored the mechanisms by which lipopolysaccharide (LPS) induces cyclooxygenase (COX)-2 expression in murine lymphatic endothelial cells (SV-LECs). LPS caused increases in cox-2 mRNA and protein levels, as well as in COX-2 promoter luciferase activity in SV-LECs. These actions were associated with protein phosphatase 2A (PP2A), apoptosis signal-regulating kinase 1 (ASK1), JNK1/2 and p38MAPK activation, and NF-κB subunit p65 and C/EBPβ phosphorylation. PP2A-ASK1 signaling blockade reduced LPS-induced JNK1/2, p38MAPK, p65 and C/EBPβ phosphorylation. Transfection with PP2A siRNA reduced LPS’s effects on p65 and C/EBPβ binding to the COX-2 promoter region. Transfected with the NF-κB or C/EBPβ site deletion of COX-2 reporter construct also abrogated LPS’s enhancing effect on COX-2 promoter luciferase activity in SV-LECs. Taken together, the induction of COX-2 in SV-LECs exposed to LPS may involve PP2A-ASK1-JNK and/or p38MAPK-NF-κB and/or C/EBPβ cascade.  相似文献   

7.
8.
Transforming growth factor-β (TGF-β) plays a dual role in hepatocytes, mediating both tumor suppressor and promoter effects. The suppressor effects of the cytokine can be negatively regulated by activation of survival signals, mostly dependent on tyrosine kinase activity. The aim of our work was to study the role of the protein-tyrosine phosphatase 1B (PTP1B) on the cellular responses to TGF-β, using for this purpose immortalized neonatal hepatocytes isolated from both PTP1B(+/+) and PTP1B(-/-) mice. We have found that PTP1B deficiency conferred resistance to TGF-β suppressor effects, such as apoptosis and growth inhibition, correlating with lower Smad2/Smad3 activation. Both responses were recovered in the presence of the general tyrosine kinase inhibitor genistein. PTP1B(-/-) cells showed elevated NF-κB activation in response to TGF-β. Knockdown of the NF-κB p65 subunit increased cell response in terms of Smads phosphorylation and apoptosis. Interestingly, these effects were accompanied by inhibition of Smad7 up-regulation. In addition, lack of PTP1B promoted an altered NADPH oxidase (NOX) expression pattern in response to TGF-β, strongly increasing the NOX1/NOX4 ratio, which was reverted by genistein and p65 knockdown. Importantly, NOX1 knockdown inhibited nuclear translocation of p65, promoted Smad phosphorylation, and decreased Smad7 levels. In summary, our results suggest that PTP1B deficiency confers resistance to TGF-β through Smad inhibition, an effect that is mediated by NOX1-dependent NF-κB activation, which in turn, increases the level of the Smad inhibitor Smad7 and participates in a positive feedback loop on NOX1 up-regulation.  相似文献   

9.
10.
11.
12.
GSK-3β (glycogen synthase kinase-3β), a crucial tau kinase, negatively regulates PP2A (protein phosphatase 2A), the most active tau phosphatase that is suppressed in the brain in AD (Alzheimer's disease). However, the molecular mechanism is not understood. In the present study we found that activation of GSK-3β stimulates the inhibitory phosphorylation of PP2A at Tyr307 (pY307-PP2A), whereas inhibition of GSK-3β decreased the level of pY307-PP2A both in vitro and in vivo. GSK-3β is a serine/threonine kinase that can not phosphorylate tyrosine directly, therefore we measured PTP1B (protein tyrosine phosphatase 1B) and Src (a tyrosine kinase) activities. We found that GSK-3β can modulate both PTP1B and Src protein levels, but it only inhibits PTP1B activity, with no effect on Src. Furthermore, only knockdown of PTP1B but not Src by siRNA (small interfering RNA) eliminates the effects of GSK-3β on PP2A. GSK-3β phosphorylates PTP1B at serine residues, and activation of GSK-3β reduces the mRNA level of PTP1B. Additionally, we also observed that GSK-3 negatively regulates the protein and mRNA levels of PP2A, and knockdown of CREB (cAMP-response-element-binding protein) abolishes the increase in PP2A induced by GSK-3 inhibition. The results of the present study suggest that GSK-3β inhibits PP2A by increasing the inhibitory Tyr307 phosphorylation and decreasing the expression of PP2A, and the mechanism involves inhibition of PTP1B and CREB.  相似文献   

13.
目的:研究黄芩汤对糖尿病肾病(diabetic nephropathy,DN)大鼠肾组织核因子κB(nuclear factor kappa-B,NF-κB)/NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)/胱天蛋白酶-1(cysteinyl aspartate specific proteinase-1,Caspase-1)细胞焦亡通路的影响。方法: 将SD大鼠随机分为空白组、模型组、厄贝沙坦组(27 mg/kg)和黄芩汤低、高剂量组(5 g/kg和20 g/kg),高脂饲料喂养6周联合一次性腹腔注射链脲佐菌素(35 mg/kg)诱导DN大鼠模型,每组9只。灌胃给药6周后检测大鼠血清空腹血糖(fasting blood glucose,FBG)、总胆固醇(total cholesterol,TC)、甘油三酯(triacylglycerol,TG)、尿蛋白(urine protein,UP)、尿素氮(blood urea nitrogen,BUN)、血肌酐(serum creatinine,Scr)、白介素-1β(interleukin 1β,IL-1β)和IL-18水平;HE染色和Masson染色观察大鼠肾脏病理变化;Western blot和免疫组化检测肾脏NF-κB/NLRP3/Caspase-1细胞焦亡通路相关蛋白及阳性细胞表达。结果: 与空白组比较,模型组大鼠FBG、TC、TG、UP、BUN、Scr、IL-1β和IL-18水平明显升高(P<0.01);肾脏出现肾小球体积增大及基底膜增厚,肾小管管腔扩张,炎性浸润及纤维化明显等病理变化;肾脏组织NF-κB的磷酸化水平,以及NLRP3、凋亡相关斑点样蛋白(apoptosis-associated speck-like protein containing a CARD,ASC)、Caspase-1、IL-1β和消皮素D(gasdermin D,GSDMD)的蛋白质表达明显升高(P<0.01);肾脏组织NLRP3和GSDMD阳性细胞表达水平明显升高(P<0.01)。与模型组比较,黄芩汤组大鼠上述血糖、血脂、肾功能及炎性因子水平均得到明显改善(P<0.05,P<0.01);肾脏肾小球及肾小管结构趋于正常,炎性浸润及纤维化程度得到改善;肾脏组织NF-κB的磷酸化水平,以及NLRP3、ASC、Caspase-1、IL-1β和GSDMD的蛋白质表达水平明显降低(P<0.05,P<0.01);肾脏组织NLRP3和GSDMD阳性细胞表达明显降低(P<0.05,P<0.01)。结论: 黄芩汤对DN大鼠具有确切的疗效,机制可能与抑制NF-κB/NLRP3/Caspase-1细胞焦亡通路有关。  相似文献   

14.
为研究香椿子正丁醇提取物(n-butyl alcohol extract of Toona sinensis,NBAE)对糖尿病肾病肾小球内皮细胞炎症的作用及机制,采用Wistar雄性大鼠,STZ注射造模,成功后分为DN组、DN+NBAE干预组,另设对照组。8周后取血测生化指标,取肾脏行HE和PAS染色,并行免疫组化检测MCP-1、ICAM-1、磷酸化p65的表达。以高糖(HG)、HG+NBAE、HG+NF-κB阻断剂吡咯烷二硫基甲酸盐(pyrrolidine dithiocarbamate,PDTC)刺激肾小球内皮细胞,采用Western blot法检测相关蛋白的表达。结果显示,与DN组大鼠相比,DN+NBAE组大鼠血糖明显降低,肾脏损伤减轻,相关蛋白表达均减少。细胞水平,NBAE明显降低MCP-1、ICAM-1的表达,差异具有统计学意义(P <0. 01),各指标改变情况与PDTC处理组类似。这表明NBAE明显改善DN肾小球内皮细胞的炎症,推测可能与抑制NF-κB信号通路有关。  相似文献   

15.
16.
17.
18.
Palmitate induces PTP1B expression in skeletal muscle cells. The purpose of this study was to investigate the mechanisms responsible for palmitate-induced PTP1B expression in mouse skeletal muscle cells. Three truncated fragments of PTP1B promoter were cloned into PGL3-basic vector and the promoter activity of PTP1B was assessed in C2C12 cells exposed to palmitate either in the presence or in the absence of several inhibitors to study the biochemical pathways involved. EMSA was performed to examine binding of NF-κB to NF-κB consensus sequence and PTP1B oligonucelotides in the cells treated with palmitate. Lentiviral PTP1B-shRNA was used to knockdown PTP1B in myotubes. The phosphorylation and protein levels of IRS-1 and Akt were detected by western blot. 0.5mM palmitate induced PTP1B promoter activity in fragment -1715/+59 by 50% (p<0.01). Palmitate increased NF-κB binding to both NF-κB consensus sequence and one NF-κB sequence (-920 to -935) in PTP1B promoter. Incubation of C2C12 cells with different concentrations of C2-ceramide enhanced PTP1B promoter activity dose-dependently. Inhibitors of de novo ceramide synthesis prevented palmitate-induced PTP1B promoter activity in myotubes. In addition, inhibitor of JNK pathway prevented ceramide-induced PTP1B promoter activity in myotubes. Knockdown of PTP1B also prevented ceramide-reduced IRS-1 and Akt phosphorylations in the myotubes. Exposure of the cells to PMA and calphostin C, an inhibitor of PKC, did not affect the activity of PTP1B promoter. Our data provide the evidence that the mechanism by which palmitate increased the expression of PTP1B seems to be through a mechanism involving the activation of ceramide-JNK and NF-κB pathways.  相似文献   

19.
Protein-tyrosine phosphatase 1B (PTP1B) is an important regulator of protein-tyrosine kinase-dependent signaling pathways. Changes in expression and activity of PTP1B have been associated with various human diseases; however, the mechanisms by which PTP1B expression is regulated have yet to be characterized. Previously, we have shown that the expression of PTP1B is enhanced by p210 Bcr-Abl and that PTP1B is a specific antagonist of transformation induced by this oncoprotein protein-tyrosine kinase. Here we have characterized the PTP1B promoter and demonstrate that a motif with features of a stress-response element acts as a p210 Bcr-Abl-responsive sequence, termed PRS. We have shown that three C(2)H(2) zinc finger proteins, namely Sp1, Sp3, and Egr-1, bind to PRS. Whereas binding of either Sp1 or Sp3 induced promoter function, Egr-1 repressed Sp3-mediated PTP1B promoter activation. The binding of Egr-1 to PRS is suppressed by p210 Bcr-Abl due to the inhibition of Egr-1 expression, resulting in the enhancement of PTP1B promoter activity. Our data indicate that Egr-1 and Sp family proteins play a reciprocal role in the control of expression from the PTP1B promoter.  相似文献   

20.
Protein tyrosine phosphatase 1B (PTP1B) is implicated in a number of signaling pathways including those mediated by insulin, epidermal growth factor (EGF), and the Src family kinases. The scaffolding protein caveolin-1 is also a participant in these pathways and is specifically phosphorylated on tyrosine 14, when these pathways are activated. Here, we provide evidence that PTP1B can efficiently catalyze the removal of the phosphoryl group from phosphocaveolin-1. Overexpression of PTP1B decreases tyrosine 14 phosphorylation in caveolin-1, while expression of the substrate-trapping mutant PTP1B/D181A causes the accumulation of phosphocaveolin-1 and prevents its dephosphorylation by endogenous PTPs. We further demonstrate that PTP1B physically associates with caveolin-1. Finally, we show that inhibition of PTP1B activity with a potent and specific small molecule PTP1B inhibitor blocks the PTP1B-catalyzed caveolin-1 dephosphorylation both in vitro and in vivo. Taken together, the results strongly suggest that caveolin-1 is a specific substrate for PTP1B. Identification of caveolin-1 as a PTP1B substrate represents an important new step in further understanding the signaling pathways regulated by PTP1B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号