首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We have shown that several lipids can modulate the macrophage innate immune response against mycobacteria and enhance their killing. Since NF-κB is required for mycobacterial killing, we tested the ability of lipids to activate NF-κB in uninfected macrophages and those infected with mycobacteria. In uninfected cells, sphingomyelin (SM), phosphatidylinositol-4-phosphate (PIP) and arachidonic acid (AA) enhanced NF-κB activation and the cell surface expression of CD69, a macrophage activation marker regulated by NF-κB. Sphingosine (Sph), sphingosine-1-phosphate (S1P), diacylglycerol (DAG), eicosapentanoic acid (EPA) and phosphatidyl choline (PC) failed to activate either NF-κB or CD69. Ceramide (Cer) activated CD69 expression without activating NF-κB. In Mycobacterium smegmatis- infected cells, NF-κB was transiently activated in a manner that was enhanced by SM, PIP and AA. In contrast Mycobacterium avium mostly repressed NF-κB activation and only SM and AA could induce its partial activation. While lipids that activate NF-κB in uninfected cells tend to kill mycobacteria in macrophages Sph and S1P failed to activate NF-κB under most conditions but nevertheless enhanced killing of M. smegmatis , M. avium and M. tuberculosis H37Rv. Our results argue that both NF-κB-dependent and -independent mechanisms are involved in macrophage killing of mycobacteria and that both mechanisms can be enhanced by selected lipids.  相似文献   

2.
3.
4.
Annexin A2, a multifunctional tumor associated protein, promotes nuclear factor-kappa B (NF-κB) activation by interacting with NF-κB p50 subunit and facilitating its nuclear translocation. Here we demonstrated that two ginsenosides Rg5 (G-Rg5) and Rk1 (G-Rk1), with similar structure, directly bound to Annexin A2 by molecular docking and cellular thermal shift assay. Both Rg5 and Rk1 inhibited the interaction between Annexin A2 and NF-κB p50 subunit, their translocation to nuclear and NF-κB activation. Inhibition of NF-κB by these two ginsenosides decreased the expression of inhibitor of apoptosis proteins (IAPs), leading to caspase activation and apoptosis. Over expression of K302A Annexin A2, a mutant version of Annexin A2, which fails to interact with G-Rg5 and G-Rk1, effectively reduced the NF-κB inhibitory effect and apoptosis induced by G-Rg5 and G-Rk1. In addition, the knockdown of Annexin A2 largely enhanced NF-κB activation and apoptosis induced by the two molecules, indicating that the effects of G-Rg5 and G-Rk1 on NF-κB were mainly mediated by Annexin A2. Taken together, this study for the first time demonstrated that G-Rg5 and G-Rk1 inhibit tumor cell growth by targeting Annexin A2 and NF-κB pathway, and G-Rg5 and G-Rk1 might be promising natural compounds for targeted cancer therapy.  相似文献   

5.
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes various human diseases, including blindness caused by ocular infection and sexually transmitted diseases resulting from urogenital infection. After infecting host cells, Chlamydiae avoid alarming the host's immune system. Among the immune evasion mechanisms, Chlamydiae can inhibit NF-κB activation, a crucial pathway for host inflammatory responses. In this study, we show that Chla Dub1, a deubiquitinating and deNeddylating protease from C. trachomatis , is expressed in infected cells. In transfection experiments, Chla Dub1 suppresses NF-κB activation induced by several pro-inflammatory stimuli and binds the NF-κB inhibitory subunit IκBα, impairing its ubiquitination and degradation. Thus, we provide further insight into the mechanism by which C. trachomatis may evade the host inflammatory response by demonstrating that Chla Dub1, a protease produced by this microorganism, is capable of inhibiting IκBα degradation and blocking NF-κB activation.  相似文献   

6.
7.
8.
Experimental allergic encephalomyelitis (EAE) is the animal model for Multiple Sclerosis (MS), the chronic autoimmune disease of the central nervous system (CNS). Activation of NF-κB requires the activity of IkB kinase (IKK) complex containing (IKKa and IKKb) and the regulatory protein NEMO (NF-κB essential modifier). Recently it has been shown that peptides corresponding to the NEMO-binding domain (NBD) of IKKa or IKKb specifically inhibit the induction of NF-κB activation without inhibiting the basal NF-κB activity. The present study underlines the importance of cell-permeable NBD peptides in inhibiting the disease process of adoptively-transferred EAE in female SJL/J mice. Immunocytochemical analysis of spinal cords of EAE mice showed that there was marked induction of NF-κB activation as evidenced by enhanced p65 (the RelA subunit of NF-κB) expression compared to that of control mice. Double-labelling analysis of p65 and cell-specific markers showed that p65 was mainly expressed by astrocytes, microglia and infiltrating macrophages. Next we examined the effect of NBD peptides on the disease process of EAE. Interestingly, clinical symptoms of EAE were much lower in mice receiving wild type NBD peptides. In contrast, mutated NBD peptides had no effect on the clinical symptoms of EAE. Taken together, our results support the conclusion that activation of NF-κB participates in the disease process of EAE and that inhibitors of NF-κB activation may ameliorate the neuroinflammatory disease process in MS patients.
Acknowledgements:   This study was supported by NIH grants (NS39940 and AG19487.  相似文献   

9.
Improving muscle precursor cell (MPC, muscle-specific stem cells) function during aging has been implicated as a key therapeutic target for improving age-related skeletal muscle loss. MPC dysfunction during aging can be attributed to both the aging MPC population and the changing environment in skeletal muscle. Previous reports have identified elevated levels of tumor necrosis factor-α (TNF-α) in aging, both circulating and locally in skeletal muscle. The purpose of the present study was to determine if age-related differences exist between TNF-α-induced nuclear factor-kappa B (NF-κB) activation and expression of apoptotic gene targets. MPCs isolated from 32-month-old animals exhibited an increased NF-κB activation in response to 1, 5, and 20 ng mL−1 TNF-α, compared to MPCs isolated from 3-month-old animals. No age differences were observed in the rapid canonical signaling events leading to NF-κB activation or in the increase in mRNA levels for TNF receptor 1, TNF receptor 2, TNF receptor-associated factor 2 (TRAF2), or Fas (CD95) observed after 2 h of TNF-α stimulation. Interestingly, mRNA levels for TRAF2 and the cell death-inducing receptor, Fas (CD95), were persistently upregulated in response to 24 h TNF-α treatment in MPCs isolated from 32-month-old animals, compared to 3-month-old animals. Our data indicate that age-related differences may exist in the regulatory mechanisms responsible for NF-κB inactivation, which may have an effect on TNF-α-induced apoptotic signaling. These findings improve our understanding of the interaction between aged MPCs and the changing environment associated with age, which is critical for the development of potential clinical interventions aimed at improving MPC function with age.  相似文献   

10.
11.
12.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy(CADASIL)is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation.However,the underlying cellular and molecular mechanisms remain unidentified.Here,we generated non-integrative induced pluripotent stem cells(iPSCs)from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation(c.3226C>T,p.R1076C).Vascular smooth muscle cells(VSMCs)differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes,including activation of the NOTCH and NF-kB signaling pathway,cytoskeleton disorganization,and excessive cell proliferation.In comparison,these abnormalities were not observed in vascular endothelial cells(VECs)derived from the patients iPSCs.Importantly,the abnormal upregulation of NF-kB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor,providing a potential therapeutic strategy for CADASIL.Overall,using this iPSCbased disease model,our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.  相似文献   

13.
Sex hormones seem to modulate the immune/inflammatory responses by different mechanisms in female and male rheumatoid arthritis patients. The effects of 17β-oestradiol and of testosterone were tested on the cultured human monocytic/macrophage cell line (THP-1) activated with IFN-γ in order to investigate their role in cell proliferation and apoptosis. Activated human THP-1 cells were cultured in the presence of 17β-oestradiol and testosterone (final concentration, 10 nM). The evaluation of markers of cell proliferation included the NF-κB DNA-binding assay, the NF-κB inhibition complex, the proliferating cell nuclear antigen expression and the methyl-tetrazolium salt test. Apoptosis was detected by the annexin V-propidium assay and by the cleaved poly-ADP ribose polymerase expression. Specific methods included flow analysis cytometry scatter analysis, immunocytochemistry and western blot analysis. Cell growth inhibition and increased apoptosis were observed in testosterone-treated THP-1 cells. Increased poly-ADP ribose polymerase-cleaved expression and decreased proliferating cell nuclear antigen expression, as well as an increase of IκB-α and a decrease of the IκB-α phosphorylated form (ser 32), were found in testosterone-treated THP-1 cells. However, the NF-κB DNA binding was found increased in 17β-oestradiol-treated THP-1 cells. The treatment with staurosporine (enhancer of apoptosis) induced decreased NF-κB DNA binding in all conditions, but particularly in testosterone-treated THP-1 cells. Treatment of THP-1 by sex hormones was found to influence cell proliferation and apoptosis. Androgens were found to increase the apoptosis, and oestrogens showed a protective trend on cell death – both acting as modulators of the NF-κB complex.  相似文献   

14.
Mesenchymal stem cells (MSCs) are known to induce the conversion of activated T cells into regulatory T cells in vitro. The marker CD69 is a target of canonical nuclear factor kappa-B (NF-κB) signalling and is transiently expressed upon activation; however, stable CD69 expression defines cells with immunoregulatory properties. Given its enormous therapeutic potential, we explored the molecular mechanisms underlying the induction of regulatory cells by MSCs. Peripheral blood CD3(+) T cells were activated and cultured in the presence or absence of MSCs. CD4(+) cell mRNA expression was then characterized by microarray analysis. The drug BAY11-7082 (BAY) and a siRNA against v-rel reticuloendotheliosis viral oncogene homolog B (RELB) were used to explore the differential roles of canonical and non-canonical NF-κB signalling, respectively. Flow cytometry and real-time PCR were used for analyses. Genes with immunoregulatory functions, CD69 and non-canonical NF-κB subunits (RELB and NFKB2) were all expressed at higher levels in lymphocytes co-cultured with MSCs. The frequency of CD69(+) cells among lymphocytes cultured alone progressively decreased after activation. In contrast, the frequency of CD69(+) cells increased significantly following activation in lymphocytes co-cultured with MSCs. Inhibition of canonical NF-κB signalling by BAY immediately following activation blocked the induction of CD69; however, inhibition of canonical NF-κB signalling on the third day further induced the expression of CD69. Furthermore, late expression of CD69 was inhibited by RELB siRNA. These results indicate that the canonical NF-κB pathway controls the early expression of CD69 after activation; however, in an immunoregulatory context, late and sustained CD69 expression is promoted by the non-canonical pathway and is inhibited by canonical NF-κB signalling.  相似文献   

15.
16.
17.
A novel role for p21-activated protein kinase 2 in T cell activation   总被引:5,自引:0,他引:5  
To identify novel components of the TCR signaling pathway, a large-scale retroviral-based functional screen was performed using CD69 expression as a marker for T cell activation. In addition to known regulators, two truncated forms of p21-activated kinase 2 (PAK2), PAK2DeltaL(1-224) and PAK2DeltaS(1-113), both lacking the kinase domain, were isolated in the T cell screen. The PAK2 truncation, PAK2DeltaL, blocked Ag receptor-induced NFAT activation and TCR-mediated calcium flux in Jurkat T cells. However, it had minimal effect on PMA/ionomycin-induced CD69 up-regulation in Jurkat cells, on anti-IgM-mediated CD69 up-regulation in B cells, or on the migratory responses of resting T cells to chemoattractants. We show that PAK2 kinase activity is increased in response to TCR stimulation. Furthermore, a full-length kinase-inactive form of PAK2 blocked both TCR-induced CD69 up-regulation and NFAT activity in Jurkat cells, demonstrating that kinase activity is required for PAK2 function downstream of the TCR. We also generated a GFP-fused PAK2 truncation lacking the Cdc42/Rac interactive binding region domain, GFP-PAK2(83-149). We show that this construct binds directly to the kinase domain of PAK2 and inhibits anti-TCR-stimulated T cell activation. Finally, we demonstrate that, in primary T cells, dominant-negative PAK2 prevented anti-CD3/CD28-induced IL-2 production, and TCR-induced CD40 ligand expression, both key functions of activated T cells. Taken together, these results suggest a novel role for PAK2 as a positive regulator of T cell activation.  相似文献   

18.
Recently, it has been found that overproduction of IL-12 can be dangerous to the host as it is involved in the pathogenesis of a number of autoimmune inflammatory diseases such as multiple sclerosis. It is composed of two different subunits – p40 and p35. Expression of p40 mRNA but not that of p35 mRNA in excessive amount in the CNS of patients with Multiple Sclerosis (MS) suggests that IL-12 p40 may have a role in the pathogenesis of the disease. The present study was undertaken to explore the role of p40 in the expression of TNF-α in microglia. Interestingly, we have found that IL-12 p70, p402 (the p40 homodimer) and p40 (the p40 monomer) dose-dependently induced the production of TNF-α in BV-2 microglial cells. This induction of TNF-α production was accompanied by an induction of TNF-α mRNA. In addition to BV-2 glial cells, p70, p402 and p40 also induced the production of TNF-α in mouse primary microglia and peritoneal macrophages. Since the activation of both NF-κB and C/EBPb is important for the expression of TNF-α in microglial cells, we investigated the effect of p40 on the activation of NF-κB as well as C/EBPb. Activation of NF-κB as well as C/EBPb by p40 and inhibition of p40-induced expression of TNF-α by Dp65, a dominant-negative mutant of p65, and DC/EBPb, a dominant-negative mutant of C/EBPb, suggests that p40 induces the expression of TNF-α through the activation of NF-κB and C/EBPb. This study delineates a novel role of IL-12 p40 in inducing the expression of TNF-α in microglial cells which may participate in the pathogenesis of neuroinflammatory diseases.
Acknowledgements:   This study was supported by NIH grants (NS39940 and AG19487).  相似文献   

19.
Anti-CD3 mAb can activate T cells to help in B cell activation as detected by late events, such as maturation of B cells into Ig-secreting cells (IgSC), or by early events, such as B cell surface expression of the activation marker CD23. Two different anti-CD2 mAb each inhibited anti-CD3-induced T cell-dependent B cell activation in a dose-dependent fashion. Neither irradiation of the T cells prior to culture nor depletion of CD8+ cells abrogated the inhibitory effects of anti-CD2 mAb. Despite the ability of these anti-CD2 mAb to inhibit anti-CD3-induced IL2 production, addition of exogenous IL2 to anti-CD2 mAb-containing cultures could not fully reverse the inhibitory effects on IgSC generation. Furthermore, addition of various combinations of IL1, IL2, IL4, and IL6 or crude PBMC or monocyte culture supernatants also could not reverse anti-CD2-driven inhibition. In T cell-depleted cultures, anti-CD2 mAb had no effect on the ability of IL4 to induce B cell CD23 expression, confirming that anti-CD2 mAb had no direct effect on B cells. However, in cultures containing T+ non-T cells, anti-CD2 mAb did partially inhibit IL4-induced B cell CD23 expression. Taken together, these observations demonstrate that certain CD2 ligands can modulate T cell-dependent B cell activation by a mechanism which, at least in part, involves a direct effect by the CD2 ligand on the T cell itself.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号