首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
【目的】通过优化获得最佳酶活配比,设计近平滑假丝酵母(Candida parapsilosis)CCTCC M203011的(S)-羰基还原酶Ⅱ与枯草芽孢杆菌(Bacillus sp.)YX-1葡萄糖脱氢酶在大肠杆菌中的共表达体系,实现重组菌高效催化2-羟基苯乙酮,合成(S)-苯乙二醇。【方法】分别从重组大肠杆菌中纯化了(S)-羰基还原酶Ⅱ和葡萄糖脱氢酶,研究了2种酶共催化2-羟基苯乙酮的最佳酶活比例,最适催化温度和pH,由此构建(S)-羰基还原酶Ⅱ和葡萄糖脱氢酶的共表达体系。【结果】(S)-羰基还原酶Ⅱ的比酶活力为1.3 U/mg,葡萄糖脱氢酶的比酶活力为13.5 U/mg。在总酶活力为1 U时,(S)-羰基还原酶Ⅱ和葡萄糖脱氢酶共催化体系中,确定了2种酶的最佳比例在1∶1到5∶1(U/U)之间,最适反应温度为30℃,pH为7.0。在此基础上构建了(S)-羰基还原酶Ⅱ和葡萄糖脱氢酶基因比为1∶1的共表达体系,共表达重组菌破碎上清液中(S)-羰基还原酶Ⅱ和葡萄糖脱氢酶酶活分别为0.76 U/mg和0.73 U/mg,两者的酶活比例为1∶1。在上述确定的最适催化条件下,其催化10 g/L 2-羟基苯乙酮,产物(S)-苯乙二醇的光学纯度和得率均高达99%以上。与仅含有(S)-羰基还原酶Ⅱ的重组大肠杆菌相比,共表达体系转化产物(S)-苯乙二醇的得率明显提高,且转化时间由原来的24 h缩短为13 h。【结论】通过确定(S)-羰基还原酶Ⅱ和葡萄糖脱氢酶最佳酶活配比,为构建手性催化的靶酶和辅酶再生酶共表达体系,为实现手性化合物的高效制备提供了研究基础。  相似文献   

2.
[目的]在体外研究surfactin合成酶的A结构域,为获得新的surfactin类似物奠定基础.[方法]本文从枯草芽胞杆菌(Bacillus subtilis)fmbj中克隆出surfactin合成酶第7个模块的A结构域基因(SrfAC-A),与表达质粒pET-23a相连后在大肠杆菌表达系统中表达,用Ni-NTA亲和柱对重组蛋白SrfAC-A进行分离纯化后测定其活性.[结果]克隆所得的A结构域对Ile有选择活性,而对其他氨基酸基本无活性.[结论]Surfactin合成酶中的A结构域能在体外独立行使其选择底物氨基酸的功能.  相似文献   

3.
本研究采用PCR技术从蜡样芽孢杆菌Bacillus cereus基因组DNA中克隆出亮氨酸脱氢酶基因,构建重组表达质粒p ET28α(+)-ldh,实现在大肠杆菌中的高效表达,并分析重组亮氨酸脱氢酶的酶学性质。结果表明,从Bacillus cereus成功克隆的亮氨酸脱氢酶编码基因约为1 000 bp,表达的重组亮氨酸脱氢酶相对分子质量约为40 k Da。酶学研究结果表明:该酶的最适反应温度为37℃,其热稳定性好,30℃的半衰期长达330 h;最适反应p H为9.5;在p H 7.0~8.0的缓冲液中保存24 h后仍保持原有酶活力的80%以上;金属离子Fe2+对该酶具有明显的促进作用,而EDTA强烈抑制亮氨酸脱氢酶的活性。动力学分析结果表明该酶对底物NADH催化的Km和Vmax分别为0.635 mmol/L和1.54μmol/(L·min)。亮氨酸脱氢酶基因在大肠杆菌中的成功表达为手性氨基酸的生物合成提供了可能。  相似文献   

4.
杨兴龙  穆晓清  聂尧  徐岩 《微生物学报》2016,56(11):1709-1718
【目的】通过不同双基因共表达策略对亮氨酸脱氢酶和葡萄糖脱氢酶基因在大肠杆菌中表达影响的研究,获得具有高辅酶再生效率的双酶共表达重组生物催化剂,实现L-叔亮氨酸"一锅法"高效不对称合成。【方法】以来自于蜡状芽孢杆菌(Bacillus cereus)的亮氨酸脱氢酶(LDH)和来自芽孢菌属(Bacillus sp.)的葡萄糖脱氢酶(GDH)为模板,考察单质粒共表达,双质粒共表达和融合表达等3种共表达策略对重组细胞中亮氨酸脱氢酶和葡萄糖脱氢酶活的影响,比较不同酶活比例和不同催化剂形式对三甲基丙酮酸不对称还原制备L-叔亮氨酸效率的影响。【结果】研究发现不同共表达策略对亮氨酸脱氢酶和葡萄糖脱氢酶的影响存在明显差异。亮氨酸脱氢酶在不同策略下均能够正常表达,而葡萄糖脱氢酶在融合表达时没有活力,当C端含有组氨酸标签时,表达蛋白活性低。通过表达优化,获得3株亮氨酸脱氢酶和葡萄糖脱氢酶高效表达且具有不同酶活比例的重组菌。比较粗酶液和全细胞形式下的催化效率,发现酶活比例及催化剂形式对不对称还原反应效率具有重要影响。确定单质粒串联表达C端不含His标签重组菌E.coli BL21/p ET28a-L-SD-AS-G为最佳催化剂,以粗酶液进行转化时,完全转化0.5 mol/L底物所需菌体量为15 g/L,辅酶量为0.1 mmol/L。【结论】采用单质粒共表达策略,成功构建出1株具有较高亮氨酸脱氢酶和葡萄糖脱氢酶活性的重组菌,实现高效催化TMP合成L-Tle。  相似文献   

5.
重组枯草芽胞杆菌不对称还原产d-伪麻黄碱   总被引:2,自引:1,他引:1  
为了实现羰基还原酶基因mldh在枯草芽胞杆菌Bacillus subtilis中的表达并通过细胞内的葡萄糖脱氢酶完成辅酶的再生,以枯草芽胞杆菌rpsD基因的启动子PrpsD和终止子TrpsD为表达元件,将羰基还原酶基因mldh连接至构建好的质粒(pHY300plk-PrpsD-TrpsD上,得到质粒pHY300plk-PrpsD-mldh-TrpsD;进一步将重组质粒转化入B. subtilis Wb600中获得重组菌B. subtilis Wb600 (pHY300plk-PrpsD-mldh-Trps  相似文献   

6.
根据NCBI上的报道的基因序列设计引物,以氧化葡萄糖酸杆菌(Gluconobacter oxydans)H24的基因组为模板,获得5-葡萄糖酸脱氢酶(Ga5DH)基因,将其与表达载体pET-28a连接,构建重组质粒pET-28a-Ga5DH,并转化大肠杆菌Rosetta进行表达。SDS-PAGE检测结果显示,表达蛋白的分子大小为26.5 kD,纯化后酶活达7.83 U/mg。酶学性质分析表明,该酶的最适反应温度为40℃,最适pH为11。在pH 9-11的缓冲中保温8 h,酶活力仍有80%以上的残余。该酶对多种有机溶剂具有良好的耐受性。  相似文献   

7.
薛群  应向贤  杨池  汪钊 《生物工程学报》2011,27(9):1317-1325
为了研究荧光假单胞菌中短链脱氢酶的生理角色和催化特性,从荧光假单胞菌Pseudomonas fluorescens GIM1.49基因组DNA克隆表达了一个短链脱氢酶的编码基因pfd,并分析了该基因产物的酶学性质。基因pfd全长684 bp,编码227个氨基酸,推算分子量为24.2 kDa。将携带短链脱氢酶基因的重组质粒pET28b-pfd转入大肠杆菌BL21(DE3) 进行表达,得到了28 kDa的表达产物。重组荧光假单胞菌短链脱氢酶 (PFD) 能氧化4-氯-3-羟基丁酸乙酯、1-苯乙醇、苯甲醇、仲丁醇和还原4-氯-乙酰乙酸乙酯、2-溴-苯乙酮、4-溴-苯乙酮等底物。以4-氯-3-羟基丁酸乙酯为底物时活力最高,Km值为186.90 mmol/L,Vmax为89.56 U/mg。氧化4-氯-3-羟基丁酸乙酯时,最适反应温度和pH分别为12 ℃和10.5,倾向于利用NAD+作辅酶;而还原4-氯-乙酰乙酸乙酯时,最适温度和pH为24 ℃和8.8,倾向于利用NADPH作辅酶。重组PFD能耐受50% (V/V) 的甲醇等有机助溶剂,Ca2+ (1 mmol/L) 和EDTA (5 mmol/L) 对其酶活有一定的促进作用。上述结果表明,重组PFD是一个新型的短链脱氢酶,其代谢角色推测与卤代次级醇的氧化降解有关。  相似文献   

8.
【目的】研究假坚强芽胞杆菌OF4中乙醇脱氢酶和乙醛脱氢酶的酶学特性。【方法】通过引物设计,采用PCR技术从嗜碱芽胞杆菌OF4的基因组DNA中扩增获得乙醇脱氢酶(adh)基因和乙醛脱氢酶(aldh)基因,构建表达载体,通过异源原核表达,Ni-NTA柱层析纯化酶蛋白,分析其酶学特性。【结果】乙醛脱氢酶的最适反应温度为35℃,最适反应pH值为8.0,酶蛋白的活力为979.6 U/mg,其稳定性在25℃和35℃下比45℃稍好;尽管由于乙醇脱氢酶的表达量低而未能纯化获得酶蛋白,但通过双基因共表达及乙醇耐受性实验发现乙醇脱氢酶也具备较高的催化活性。【结论】成功地从假坚强芽胞杆菌OF4中克隆获得了乙醇脱氢酶和乙醛脱氢酶基因,二者共同作用能够较大提高宿主对乙醇的耐受性。  相似文献   

9.
严伟  聂尧  徐岩 《微生物学报》2013,53(2):145-153
[目的]从长野芽胞杆菌(Bacillus naganoensis)JNB-1中克隆出普鲁兰酶基因并在大肠杆菌系统中表达,通过优化诱导条件和使用化学添加剂提高了胞外酶活.[方法]采用PCR方法,从B.naganoensis基因组中扩增出普鲁兰酶基因pul,构建重组菌E,coli BL21/pET-20b-pul.通过优化,确定优化后的IPTG诱导条件以及甘氨酸、Na+的最佳添加参数.[结果]普鲁兰酶在大肠杆菌中得到有效表达,其相对分子质量为ll9kDa.在优化后的诱导条件(诱导温度20℃,IPTG终浓度0.4 mmol/L,在菌体OD600至1.2时诱导)下,普鲁兰酶的总酶活达到10.8 U/mL.添加甘氨酸和Na+均能有效促进普鲁兰酶的分泌.在诱导时添加终浓度0.08 mol/L的甘氨酸和0.2 mol/L Na+,胞外酶活提高至8.1 U/mL,是不加任何添加剂的10.3倍.[结论]该重组菌的构建为普鲁兰酶制剂的工业生产提供了有价值的菌株,对化学添加剂促进分泌的研究也为重组酶的高水平胞外生产提供了有效的方法.  相似文献   

10.
【目的】从海洋来源的罗尼氏弧菌菌株BY中克隆得到一个具有琼胶酶活性的新基因,并对其进行重组表达。【方法】对实验室保藏的产琼胶酶菌株BY进行16S rRNA基因序列分析,并构建系统发育树。根据已报道的琼胶酶基因序列的同源性,设计简并引物,利用降落PCR (Touch-down PCR)及染色体步移技术扩增琼胶酶基因序列全长,对基因序列进行生物信息学分析。将目的基因插入pET22a(+)载体,转化大肠杆菌BL21(DE3),对重组酶进行表达,利用DNS法测定了重组酶的酶活,对该重组琼胶酶酶学性质进行研究。【结果】克隆得到一条新的琼胶酶基因,命名为Vibrio sp. BY (GenBank登录号:AIW39921.1),Vibrio sp. BY基因序列全长2 232 bp,编码744个氨基酸,理论分子量为85 kD,Vibrio sp. BY的氨基酸序列基因库中与已知的琼胶酶氨基酸序列Vibrio sp. EJY3的相似度为86%。发酵液琼胶酶酶活力为71.73 U/mL,证明表达的蛋白为琼胶酶。酶学性质研究表明重组琼胶酶的最适温度及pH分别为50 °C和7.0,并且具有较好的稳定性。【结论】利用染色体步移技术克隆得到一条新的琼胶酶基因,并在大肠杆菌BL21(DE3)中实现了重组表达,为琼胶酶的应用奠定了基础。  相似文献   

11.
正Dear Editor,In December 2019, a novel human coronavirus caused an epidemic of severe pneumonia(Coronavirus Disease 2019,COVID-19) in Wuhan, Hubei, China(Wu et al. 2020; Zhu et al. 2020). So far, this virus has spread to all areas of China and even to other countries. The epidemic has caused 67,102 confirmed infections with 1526 fatal cases  相似文献   

12.
Curcumin is the yellow pigment of turmeric that interacts irreversibly forming an adduct with thioredoxin reductase (TrxR), an enzyme responsible for redox control of cell and defence against oxidative stress. Docking at both the active sites of TrxR was performed to compare the potency of three naturally occurring curcuminoids, namely curcumin, demethoxy curcumin and bis-demethoxy curcumin. Results show that active sites of TrxR occur at the junction of E and F chains. Volume and area of both cavities is predicted. It has been concluded by distance mapping of the most active conformations that Se atom of catalytic residue SeCYS498, is at a distance of 3.56 from C13 of demethoxy curcumin at the E chain active site, whereas C13 carbon atom forms adduct with Se atom of SeCys 498. We report that at least one methoxy group in curcuminoids is necessary for interation with catalytic residues of thioredoxin. Pharmacophore of both active sites of the TrxR receptor for curcumin and demethoxy curcumin molecules has been drawn and proposed for design and synthesis of most probable potent antiproliferative synthetic drugs.  相似文献   

13.
The young pistils in the melanthioid tribes, Hewardieae, Petrosavieae and Tricyrteae, are uniformly tricarpellate and syncarpous. They lack raphide idioblasts. All are multiovulate, with bitegmic ovules. The Petrosavieae are marked by the presence of septal glands and incomplete syncarpy. Tepals and stamens adhere to the ovary in the Hewardieae and the Petrosavieae but not in the Tricyrteae. Two vascular bundles occur in the stamens of the Hewartlieae and Tricyrtis latifolia. Ventral bundles in the upper part of the ovary of the Hewardieae are continuous with compound septal bundles and placental bundles in the lower part. Putative ventral bundles occur in the alternate position in the Tricyrteae and putative placental bundles in the opposite. position in the Petrosavieae. The dichtomously branched stigma in each carpel of the Tricyrteae is supplied by a bifurcated dorsal bundle.  相似文献   

14.
15.
Highlights
1. The N-terminal tail of histone H3 is specifically cleaved during EV71 infection.
2. Viral protease 3C is identified as a protease responsible for proteolytically processing the N-terminal H3 tail.
3. Our finding reveals a new epigenetic regulatory mechanism for Enterovirus 71 in virus-host interactions.  相似文献   

16.
Rasmussen’s encephalitis (RE) is a rare pediatric neurological disorder, and the exact etiology is not clear. Viral infection may be involved in the pathogenesis of RE, but conflicting results have reported. In this study, we evaluated the expression of both Epstein-Barr virus (EBV) and human herpes virus (HHV) 6 antigens in brain sections from 30 patients with RE and 16 control individuals by immunohistochemistry. In the RE group, EBV and HHV6 antigens were detected in 56.7% (17/30) and 50% (15/30) of individuals, respectively. In contrast, no detectable EBV and HHV6 antigen expression was found in brain tissues of the control group. The co-expression of EBV and HHV6 was detected in 20.0% (6/30) of individuals. In particular, a 4-year-old boy had a typical clinical course, including a medical history of viral encephalitis, intractable epilepsy, and hemispheric atrophy. The co-expression of EBV and HHV6 was detected in neurons and astrocytes in the brain tissue, accompanied by a high frequency of CD8+ T cells. Our results suggest that EBV and HHV6 infection and the activation of CD8+ T cells are involved in the pathogenesis of RE.  相似文献   

17.
18.
Shen  Jia-Yuan  Li  Man  Xie  Lyu  Mao  Jia-Rong  Zhou  Hong-Ning  Wang  Pei-Gang  Jiang  Jin-Yong  An  Jing 《中国病毒学》2021,36(1):145-148
正Dear Editor,Chikungunya virus (CHIKV), an arbovirus in the family of Togaviridae, genus Alphavirus, is transmitted by the A.aegyptii or A. albopictus mosquito, and causes disease in humans characterized by fever, rash, and arthralgia (Silva and Dermody 2017; Suhrbier 2019). It was first reported in 1953 in Tanzania, and caused only a few outbreaks and sporadic cases in Africa and Asia in last century. However, in the epidemic in 2004, CHIKV acquired mutations that conferred enhanced transmission by the A. albopictus mosquito(Schuffenecker et al. 2006). Since then, it has successively caused outbreaks in Africa, the Indian Ocean, South East Asia, the South America, and Europe (Zeller et al. 2016).  相似文献   

19.
In conclusion, the novel visual RT-LAMP assay is a simple, rapid, and sensitive approach for detection of SARS-CoV-2, and it is ready for application in primary care and community hospitals or health care centers, and even patients' own houses in response to the current SARS-CoV-2 epidemic because the assay does not require sophisticated equipment and skilled personnel. Furthermore, it is also ready to be used in fields for screening samples from wild animals and environments to facilitate the identification of potential intermediate hosts that mediate the cross-species transmission of SARS-CoV-2 from bats to humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号