首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Abstract

Cleavage of two types of secondary structure-forming substrates by their cognate hammerhead ribozymes were studied by measuring their kinetic parameters. A substrate with a self-complementary structure (GGUCCUAGGA, CL-3) was slowly cleaved by a two-stranded ribozyme. An isomer having no complementary sequence (GGUCGUAGCA, CL-3N) was cleaved more than 10 times faster than the self-complementary substrate. A newly designed ribozyme which contained a stable loop and stem cleaved the self-complementary decamer 40 times faster than the two-stranded ribozyme. A 15 mer which derived from a ras mRNA was found to have an intermolecular base pairs and was used to design more efficient ribozymes. Gel mobility shift assay was employed to investigate the binding properties of substrates to ribozymes. Investigations of the thermodynamic stability of the ribozyme-substrate complex are essential in the design of ribozymes that efficiently cleave RNA.

  相似文献   

2.
3.
Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites in a target RNA that contained human immunodeficiency virus type 1 (HIV-1) vif - vpr . The base pairing-availability of individual nucleotides at each cleavage site was then assessed by chemical modification mapping. The ability of hammerhead ribozymes to cleave the long target RNA was most strongly correlated with the availability of nucleotides near the cleavage site for base pairing with the ribozyme. Moreover, the accessibility of the seven hammerhead ribozyme cleavage sites in the long target RNA varied by up to 400-fold but was directly determined by the availability of cleavage sites for base pairing with the ribozyme. It is therefore unlikely that steric interference affected hammerhead ribozyme cleavage. Chemical modification mapping of cleavage site structure may therefore provide a means to identify efficient hammerhead ribozyme cleavage sites in long target RNAs.  相似文献   

4.
A hammerhead ribozyme directed against murine TNFalpha (mTNFalpha) mRNA has been constructed. In vitro studies showed that this ribozyme was released from the parent molecule by flanking cis-acting hammerhead and hairpin ribozymes. This same anti-mTNFalpha ribozyme specifically cleaved both synthetically derived substrate RNA and mTNFalpha mRNA within a pool of total cellular RNA. Endogenous delivery of this anti-mTNFalpha ribozyme via the self-cleaving cassette reduced mTNFalpha mRNA and protein levels in lipopolysaccharide (LPS)-stimulated, stably transfected murine macrophage RAW 264.7 cells. When complexed to liposomes and exogenously delivered to mouse peritoneal macrophages, the same ribozyme, with and without the cis-acting ribozymes, reduced mTNFalpha protein levels. However, an irrelevant ribozyme delivered in an identical fashion was also effective at reducing mTNFalpha protein levels. These data suggest that anti-mTNFalpha ribozymes can be constructed which efficiently cleave mTNFalpha mRNA, but irrelevant RNA/liposome complexes also effectively limit TNFalpha mRNA expression and can mimic functional ribozyme activity under in vitro conditions.  相似文献   

5.
Five short hammerhead ribozymes (Rzs) were constructed and tested, using a range ofin vitro reaction conditions, for catalytic activity against the mRNA encoding the lignin-forming peroxidase (TPX) of tobacco. Although all 5 Rzs were shown to be able to cleave the RNA substrate, percentage cleavage varied with pre-denaturation of Rz and substrate, incubation temperature, length of incubation and ribozyme (Rz)-to-substrate ratio. One Rz with two catalytic units and 60 nucleotides of complementary sequence in 3 regions was shown to most efficiently cleave the substrate under allin vitro conditions tested. This ribozyme cleaved better than the two single ribozymes from which it was made. The superior cleaving ability of this Rz was shown to be due to the accessibility of the chosen target site and to the increased length of the hybridizing arms spanning this accessible region of the RNA.  相似文献   

6.
Delta ribozyme has the ability to cleave in transan mRNA.   总被引:3,自引:0,他引:3       下载免费PDF全文
We report here the first demonstration of the cleavage of an mRNA in trans by delta ribozyme derived from the antigenomic version of the human hepatitis delta virus (HDV). We characterized potential delta ribozyme cleavage sites within HDV mRNA sequence (i.e. C/UGN6), using oligonucleotide binding shift assays and ribonuclease H hydrolysis. Ribozymes were synthesized based on the structural data and then tested for their ability to cleave the mRNA. Of the nine ribozymes examined, three specifically cleaved a derivative HDV mRNA. All three active ribozymes gave consistent indications that they cleaved single-stranded regions. Kinetic characterization of the ability of ribozymes to cleave both the full-length mRNA and either wild-type or mutant small model substrate suggests: (i) delta ribozyme has turnovers, that is to say, several mRNA molecules can be successively cleaved by one ribozyme molecule; and (ii) the substrate specificity of delta ribozyme cleavage is not restricted to C/UGN6. Specifically, substrates with a higher guanosine residue content upstream of the cleavage site (i.e. positions -4 to -2) were always cleaved more efficiently than wild-type substrate. This work shows that delta ribozyme constitutes a potential catalytic RNA for further gene-inactivation therapy.  相似文献   

7.
Li YL  Torchet C  Vergne J  Maurel MC 《Biochimie》2007,89(10):1257-1263
Ribozymes are catalytic RNAs that possess the property of cutting an RNA target via site-specific cleavage after sequence-specific recognition. Ribozymes can moreover cleave multiple substrate molecules. An increasing number of studies show that ribozymes are particularly well adapted tools against cancer, silencing or down-regulating gene expression at the RNA level. We have constructed an adenine-dependent hairpin ribozyme that cleaves the sequence at nucleotides A(225)(downward arrow)G(226) relative to the start codon of translation of the Tpl-2 kinase mRNA; this serine/threonine kinase activates the mitogen-activated protein kinase pathway implicated in cell proliferation in breast cancer. An adenine-dependent hairpin ribozyme 1 (ADHR1) was previously isolated using the Systematic Evolution of Ligands by EXponential enrichment procedure. Switch on/switch off ribozymes are particularly useful since high amounts of stable ribozyme can be produced in the absence of adenine and the ribozyme specifically cleaves its target in the presence of adenine. The ADHR1 target sequence was replaced by a sequence derived from the Tpl-2 kinase mRNA. The resulting Tpl-2 ribozyme is active in cis cleavage: kinetic studies have been performed as a function of Mg2+ concentration, adenine concentration, as well as at different pH and with various cofactors. Finally, the Tpl-2 ribozyme was shown to cleave its target in trans successfully. These findings demonstrate that a potential therapeutic ribozyme can be produced by simple sequence modification.  相似文献   

8.
Ribozyme mediated destruction of RNA in vivo.   总被引:38,自引:3,他引:35       下载免费PDF全文
Previous studies have demonstrated that high ribozyme to substrate ratios are required for ribozyme inhibitory function in nuclear extracts. To obtain high intracellular levels of ribozymes, tRNA genes, known to be highly expressed in most tissues, have been modified for use as ribozyme expression cassettes. Ribozyme coding sequences were placed between the A and the B box, internal promoter sequences of a Xenopus tRNAMet gene. When injected into the nucleus of frog oocytes, the ribozyme tRNA gene (ribtDNA) produces 'hammerhead' ribozymes which cleave the 5' sequences of U7snRNA, its target substrate, with high efficiency in vitro. Oocytes were coinjected with ribtDNA, U7snRNA and control substrate RNA devoid of a cleavage sequence. It was found that the ribtRNA remained localized mainly in the nucleus, whereas the substrate and the control RNA exited rapidly into the cytoplasm. However, sufficient ribtRNA migrated into the cytoplasm to cleave, and destroy, the U7snRNA. Thus, the action of targeted 'hammerhead' ribozymes in vivo is demonstrated.  相似文献   

9.
Because the substrate binding site (P1) of HDV ribozyme consists of only seven nucleotides, cleavage of undesired RNA is likely to occur when applied for a specific long RNA target such as mRNA. To overcome this problem, we designed modified trans-acting HDV ribozymes with an extra substrate-binding site (P5) in addition to the original binding site (P1). By inserting an additional seven base-pair stem (P5 stem) into the J1/2 single-stranded region of the ribozyme core system and partial destabilization of the P2 or P4 stem, we succeeded in preparation of new HDV ribozymes that can cleave the target RNA depending on the formation of P5 stem. Moreover, the ribozyme with a six-nucleotide P1 site was able to distinguish the substrate RNA with a complete match from that with a single mismatch in the P1 region. These results suggest that the HDV ribozyme system is useful for the application in vivo.  相似文献   

10.
The efficiencies of 32 antisense oligodeoxynucleotides, 35 DNA enzymes and 6 ribozymes to bind and cleave the full-length messenger RNA of the vanilloid receptor subtype I were analyzed. Systematic screening of the mRNA revealed that good accessibility of a putative cleavage site for antisense oligodeoxynucleotides is a necessary but not a sufficient prerequisite for efficient DNA enzymes. Comparison of DNA enzymes and ribozymes against the same target sites revealed: 1) DNA enzymes were more active with longer recognition arms (9 nucleotides on either side), whereas ribozymes revealed higher activities with shorter recognition arms (7 nucleotides on either side). 2) It does not only depend on the target site but also on the enzyme sequence, whether a DNA enzyme or a ribozyme is more active. 3) The most efficient DNA enzyme found in this study had an approximately 15-fold higher reaction rate, k(react), and a 100-fold higher k(react)/K(m) under single turnover conditions compared with the fastest ribozyme. DNA enzymes as well as ribozymes showed significant activity under multiple turnover conditions, the DNA enzymes again being more active. We therefore conclude that DNA enzymes are an inexpensive, very stable and active alternative to ribozymes for the specific cleavage of long RNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号