首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Estrogen improves cardiac recovery after ischemia/reperfusion (I/R) by yet incompletely understood mechanisms. Mitochondria play a crucial role in I/R injury through cytochrome c-dependent apoptosis activation. We tested the hypothesis that 17β-estradiol (E2) as well as a specific ERβ agonist improve cardiac recovery through estrogen receptor (ER)β-mediated mechanisms by reducing mitochondria-induced apoptosis and preserving mitochondrial integrity.

Methods

We randomized ovariectomized C57BL/6N mice 24h before I/R to pre-treatment with E2 or a specific ERβ agonist (ERβA). Isolated hearts were perfused for 20min prior to 30min global ischemia followed by 40min reperfusion.

Results

Compared with controls, ERβA and E2 treated groups showed a significant improvement in cardiac recovery, i.e. an increase in left ventricular developed pressure, dP/dtmax and dP/dtmin. ERβA and E2 pre-treatment led to a significant reduction in apoptosis with decreased cytochrome c release from the mitochondria and increased mitochondrial levels of anti-apoptotic Bcl2 and ACAA2. Protein levels of mitochondrial translocase inner membrane (TIM23) and mitochondrial complex I of respiratory chain were increased by ERβA and E2 pre-treatment. Furthermore, we found a significant increase of myosin light chain 2 (MLC2) phosphorylation together with ERK1/2 activation in E2, but not in ERβA treated groups.

Conclusions

Activation of ERβ is essential for the improvement of cardiac recovery after I/R through the inhibition of apoptosis and preservation of mitochondrial integrity and can be a achieved by a specific ERβ agonist. Furthermore, E2 modulates MLC2 activation after I/R independent of ERβ.
  相似文献   

2.

Background

TGF-β1 plays an important role in the epithelial–mesenchymal transition (EMT) of epithelial cancers, including non-small cell lung cancer (NSCLC). While the full underlying mechanism remains unclear, miR-9 is known to play a critical role in the regulation of NSCLC cell invasion. We tested whether miR-9 targets E-cadherin and thus affects TGF-β1-induced EMT in NSCLC cells by assessing the expression levels of miR-9 and E-cadherin for NSCLC patients and then verifying the targeting of E-cadherin by miR-9 using the dual luciferase reporter system.

Results

MiR-9 was significantly upregulated in NSCLC tissues compared with its level in adjacent normal tissues. The expression of E-cadherin in NSCLC tissues was significantly decreased. In addition, we found that TGF-β1 significantly upregulated the expression of miR-9 and downregulated the expression of E-cadherin. E-cadherin was confirmed as a direct target gene of miR-9. Using an miR-9 inhibitor reversed the TGF-β1-mediated inhibition of E-cadherin expression and upregulation of the mesenchymal marker α-SMA. TGF-β1 significantly induced cell invasion, and this effect was significantly inhibited by miR-9 inhibitors.

Conclusions

TGF-β1 induced EMT in NSCLC cells by upregulating miR-9 and downregulating miR-9’s target, E-cadherin.
  相似文献   

3.

Objectives

Copper oxide nanoparticles (CuO NPs) promoting anticancer activity may be due to the regulation of various classes of histone deacetylases (HDACs).

Results

Green-synthesized CuO NPs significantly arrested total HDAC level and also suppressed class I, II and IV HDACs mRNA expression in A549 cells. A549 cells treated with CuO NPs downregulated oncogenes and upregulated tumor suppressor protein expression. CuO NPs positively regulated both mitochondrial and death receptor-mediated apoptosis caspase cascade pathway in A549 cells.

Conclusion

Green-synthesized CuO NPs inhibited HDAC and therefore shown apoptosis mediated anticancer activity in A549 lung cancer cell line.
  相似文献   

4.

Background

Epidermal growth factor receptor- tyrosine kinase inhibitors (EGFR-TKIs) benefit Non-small cell lung cancer (NSCLC) patients, and an EGFR-TKIi erlotinib, is approved for patients with recurrent NSCLC. However, resistance to erlotinib is a major clinical problem. Earlier we have demonstrated the role of Hedgehog (Hh) signaling in Epithelial-to-Mesenchymal transition (EMT) of NSCLC cells, leading to increased proliferation and invasion. Here, we investigated the role of Hh signaling in erlotinib resistance of TGF-β1-induced NSCLC cells that are reminiscent of EMT cells.

Methods

Hh signaling was inhibited by specific siRNA and by GDC-0449, a small molecule antagonist of G protein coupled receptor smoothened in the Hh pathway. Not all NSCLC patients are likely to benefit from EGFR-TKIs and, therefore, cisplatin was used to further demonstrate a role of inhibition of Hh signaling in sensitization of resistant EMT cells. Specific pre- and anti-miRNA preparations were used to study the mechanistic involvement of miRNAs in drug resistance mechanism.

Results

siRNA-mediated inhibition as well as pharmacological inhibition of Hh signaling abrogated resistance of NSCLC cells to erlotinib and cisplatin. It also resulted in re-sensitization of TGF-β1-induced A549 (A549M) cells as well the mesenchymal phenotypic H1299 cells to erlotinib and cisplatin treatment with concomitant up-regulation of cancer stem cell (CSC) markers (Sox2, Nanog and EpCAM) and down-regulation of miR-200 and let-7 family miRNAs. Ectopic up-regulation of miRNAs, especially miR-200b and let-7c, significantly diminished the erlotinib resistance of A549M cells. Inhibition of Hh signaling by GDC-0449 in EMT cells resulted in the attenuation of CSC markers and up-regulation of miR-200b and let-7c, leading to sensitization of EMT cells to drug treatment, thus, confirming a connection between Hh signaling, miRNAs and drug resistance.

Conclusions

We demonstrate that Hh pathway, through EMT-induction, leads to reduced sensitivity to EGFR-TKIs in NSCLCs. Therefore, targeting Hh pathway may lead to the reversal of EMT phenotype and improve the therapeutic efficacy of EGFR-TKIs in NSCLC patients.
  相似文献   

5.

Background

Recently, we showed that exogenous treatment with estrogen (E2) rescues pre-existing advanced heart failure (HF) in mice. Since most of the biological actions of E2 are mediated through the classical estrogen receptors alpha (ERα) and/or beta (ERβ), and both these receptors are present in the heart, we examined the role of ERα and ERβ in the rescue action of E2 against HF.

Methods

Severe HF was induced in male mice by transverse aortic constriction-induced pressure overload. Once the ejection fraction (EF) reached ~?35%, mice were treated with selective agonists for ERα (PPT, 850 μg/kg/day), ERβ (DPN, 850 μg/kg/day), or E2 (30 μg/kg/day) together with an ERβ-antagonist (PHTPP, 850 μg/kg/day) for 10 days.

Results

EF of HF mice was significantly improved to 45.3?±?2.1% with diarylpropionitrile (DPN) treatment, but not with PPT (31.1?±?2.3%). E2 failed to rescue HF in the presence of PHTPP, as there was no significant improvement in the EF at the end of the 10-day treatment (32.5?±?5.2%). The improvement of heart function in HF mice treated with ERβ agonist DPN was also associated with reduced cardiac fibrosis and increased cardiac angiogenesis, while the ERα agonist PPT had no significant effect on either cardiac fibrosis or angiogenesis. Furthermore, DPN improved hemodynamic parameters in HF mice, whereas PPT had no significant effect.

Conclusions

E2 treatment rescues pre-existing severe HF mainly through ERβ. Rescue of HF by ERβ activation is also associated with stimulation of cardiac angiogenesis, suppression of fibrosis, and restoration of hemodynamic parameters.
  相似文献   

6.

Introduction

Histologically lung cancer is classified into four major types: adenocarcinoma (Ad), squamous cell carcinoma (SqCC), large cell carcinoma (LCC), and small cell lung cancer (SCLC). Presently, our understanding of cellular metabolism among them is still not clear.

Objectives

The goal of this study was to assess the cellular metabolic profiles across these four types of lung cancer using an untargeted metabolomics approach.

Methods

Six lung cancer cell lines, viz., Ad (A549 and HCC827), SqCC (NCl-H226 and NCl-H520), LCC (NCl-H460), and SCLC (NCl-H526), were analyzed using liquid chromatography quadrupole time-of-flight mass spectrometry, with normal human small airway epithelial cells (SAEC) as the control group. The principal component analysis (PCA) was performed to identify the metabolic signatures that had characteristic alterations in each histological type. Further, a metabolite set enrichment analysis was performed for pathway analysis.

Results

Compared to the SAEC, 31, 27, 34, 34, 32, and 39 differential metabolites mainly in relation to nucleotides, amino acid, and fatty acid metabolism were identified in A549, HCC827, NCl-H226, NCl-H520, NCl-H460, and NCl-H526 cells, respectively. The metabolic signatures allowed the six cancerous cell lines to be clearly separated in a PCA score plot.

Conclusion

The metabolic signatures are unique to each histological type, and appeared to be related to their cell-of-origin and mutation status. The changes are useful for assessing the metabolic characteristics of lung cancer, and offer potential for the establishment of novel diagnostic tools for different origin and oncogenic mutation of lung cancer.
  相似文献   

7.

Background

Epidemiological and molecular findings suggest a relationship between Alzheimer’s disease (AD) and dyslipidemia, although the nature of this association is not well understood.

Results

Using linear mixed effects models, we investigated the relationship between CSF levels of heart fatty acid binding protein (HFABP), a lipid binding protein involved with fatty acid metabolism and lipid transport, amyloid-β (Aβ), phospho-tau, and longitudinal MRI-based measures of brain atrophy among 295 non-demented and demented older individuals. Across all participants, we found a significant association of CSF HFABP with longitudinal atrophy of the entorhinal cortex and other AD-vulnerable neuroanatomic regions. However, we found that the relationship between CSF HABP and brain atrophy was significant only among those with low CSF Aβ1–42 and occurred irrespective of phospho-tau181p status.

Conclusions

Our findings indicate that Aβ-associated volume loss occurs in the presence of elevated HFABP irrespective of phospho-tau. This implicates a potentially important role for fatty acid binding proteins in Alzheimer’s disease neurodegeneration.
  相似文献   

8.

Background

Human cells release nano-sized vesicles called exosomes, containing mRNA, miRNA and specific proteins. Exosomes from one cell can be taken up by another cell, which is a recently discovered cell-to-cell communication mechanism. Also, exosomes can be taken up by different types of cancer cells, but the potential functional effects of mast cell exosomes on tumor cells remain unknown.

Methods and results

Exosomes were isolated from the human mast cell line, HMC-1, and uptake of PKH67-labelled exosomes by the lung epithelial cell line, A549, was examined using flow cytometry and fluorescence microscopy. The RNA cargo of the exosomes was analyzed with a Bioanalyzer and absence or presence of the c-KIT mRNA was determined by RT-PCR. The cell proliferation was determined in a BrdU incorporation assay, and proteins in the KIT-SCF signaling pathway were detected by Western blot. Our result demonstrates that exosomes from mast cells can be taken up by lung cancer cells. Furthermore, HMC-1 exosomes contain and transfer KIT protein, but not the c-KIT mRNA to A549 cells and subsequently activate KIT-SCF signal transduction, which increase cyclin D1 expression and accelerate the proliferation in the human lung adenocarcinoma cells.

Conclusions

Our results indicate that exosomes can transfer KIT as a protein to tumor cells, which can affect recipient cell signaling events through receptor-ligand interactions.
  相似文献   

9.

Background

Our previous study showed that the NS1 protein of highly pathogenic avian influenza A virus H5N1 induced caspase-dependent apoptosis in human alveolar basal epithelial cells (A549), supporting its function as a proapoptotic factor during viral infection, but the mechanism is still unknown.

Results

To characterize the mechanism of NS1-induced apoptosis, we used a two-hybrid system to isolate the potential NS1-interacting partners in A549 cells. We found that heat shock protein 90 (Hsp90) was able to interact with the NS1 proteins derived from both H5N1 and H3N2 viruses, which was verified by co-immunoprecitation assays. Significantly, the NS1 expression in the A549 cells dramatically weakened the interaction between Apaf-1 and Hsp90 but enhanced its interaction with cytochrome c (Cyt c), suggesting that the competitive binding of NS1 to Hsp90 might promote the Apaf-1 to associate with Cyt c and thus facilitate the activation of caspase 9 and caspase 3.

Conclusions

The present results demonstrate that NS1 protein of Influenza A Virus interacts with heat hock protein Hsp90 and meidates the apoptosis induced by influenza A virus through the caspase cascade.
  相似文献   

10.

Objective

To evaluate the role and the molecular mechanism of miR-30d in non-small cell lung cancer (NSCLC).

Results

qRT-PCR was used to detect miR-30d expression in NSCLC tissues and cell lines. miR-30d was frequently down-regulated in NSCLC and its expression was associated with clinicopathological features of NSCLCC patients. Over-expression of miR-30d notably inhibited cell migration and invasion in NSCLC cell lines. miR-30d could negatively regulate Nuclear factor I B (NFIB) by directly targeting its 3′-UTR, which was confirmed by luciferase assay. NFIB also reversed miR-30d-mediated suppression on the migration and invasion in NSCLC cell lines.

Conclusion

miR-30d suppressed cell migration and invasion by directly targeting NFIB in NSCLC, and NFIB could partially abrogated the inhibition of biological functions by miR-30d.
  相似文献   

11.

Background

Airway epithelial cells (AEC) act as the first line of defence in case of lung infections. They constitute a physical barrier against pathogens and they participate in the initiation of the immune response. Yet, the modalities of pathogen recognition by AEC and the consequences on the epithelial barrier remain poorly documented.

Method

We investigated the response of primary human AEC to viral (polyinosinic-polycytidylic acid, poly(I:C)) and bacterial (lipopolysaccharide, LPS) stimulations in combination with the lung remodeling factor Transforming Growth Factor-β (TGF-β).

Results

We showed a strong production of pro-inflammatory cytokines (Interleukin (IL)-6, Tumor Necrosis Factor α, TNFα) or chemokines (CCL2, CCL3, CCL4, CXCL10, CXCL11) by AEC stimulated with poly(I:C). Cytokine and chemokine production, except CXCL10, was Toll Like Receptor (TLR)-3 dependent and although they express TLR4, we found no cytokine production after LPS stimulation. Poly(I:C), but not LPS, synergised with TGF-β for the production of matrix metalloproteinase-9 (MMP-9) and fibronectin. Mechanistic analyses suggest the secretion of Wnt ligands by AEC along with a degradation of the cellular junctions after poly(I:C) exposure, leading to the release of β-catenin from the cell membrane and stimulation of the Wnt/β-catenin pathway.

Conclusion

Our results highlight the cross talk between TGF-β and TLR signaling in bronchial epithelium and its impact on the remodeling process.
  相似文献   

12.

Objective

To investigate the roles of miR-145 in lung adenocarcinoma (LAC) and to clarify the regulation of N-cadherin by miR-145.

Results

In 57 paired clinical LAC tissues, diminished miR-145 was significantly correlated with the lymph node metastasis and was negatively correlated with N-cadherin mRNA level expression. Wound healing and transwell assays revealed a reduced capability of tumor metastasis induced by miR-145 in LAC. miR-145 negatively regulated the invasion of cell lines through targeting N-cadherin by directly binding to its 3′-untranslated region. Silencing of N-cadherin inhibited invasion and migration of LAC cell lines similar to miR-145 overexpression.

Conclusions

MiR-145 could inhibit invasion and migration of lung adenocarcinoma cell lines by directly targeting N-cadherin.
  相似文献   

13.
14.
15.

Background

Outer membrane vesicles (OMVs) of Acinetobacter baumannii are cytotoxic and elicit a potent innate immune response. OMVs were first identified in A. baumannii DU202, an extensively drug-resistant clinical strain. Herein, we investigated protein components of A. baumannii DU202 OMVs following antibiotic treatment by proteogenomic analysis.

Methods

Purified OMVs from A. baumannii DU202 grown in different antibiotic culture conditions were screened for pathogenic and immunogenic effects, and subjected to quantitative proteomic analysis by one-dimensional electrophoresis and liquid chromatography combined with tandem mass spectrometry (1DE-LC-MS/MS). Protein components modulated by imipenem were identified and discussed.

Results

OMV secretion was increased >?twofold following imipenem treatment, and cytotoxicity toward A549 human lung carcinoma cells was elevated. A total of 277 proteins were identified as components of OMVs by imipenem treatment, among which β-lactamase OXA-23, various proteases, outer membrane proteins, β-barrel assembly machine proteins, peptidyl-prolyl cis–trans isomerases and inherent prophage head subunit proteins were significantly upregulated.

Conclusion

In vitro stress such as antibiotic treatment can modulate proteome components in A. baumannii OMVs and thereby influence pathogenicity.
  相似文献   

16.

Background

Insulin degrading enzyme (IDE) is a major protease of amyloid beta peptide (Aβ), a prominent toxic protein in Alzheimer’s disease (AD) pathogenesis. Previous studies suggested that statins promote IDE secretion; however, the underlying mechanism is unknown, as IDE has no signal sequence.

Results

In this study, we found that simvastatin (0.2 μM for 12 h) induced the degradation of extracellular Aβ40, which depended on IDE secretion from primary astrocytes. In addition, simvastatin increased IDE secretion from astrocytes in a time- and dose-dependent manner. Moreover, simvastatin-mediated IDE secretion was mediated by an autophagy-based unconventional secretory pathway, and autophagic flux regulated simvastatin-mediated IDE secretion. Finally, simvastatin activated autophagy via the LKB1-AMPK-mTOR signaling pathway in astrocytes.

Conclusions

These results demonstrate a novel pathway for statin-mediated IDE secretion from astrocytes. Modulation of this pathway could provide a potential therapeutic target for treatment of Aβ pathology by enhancing extracellular clearance of Aβ.
  相似文献   

17.

Background

The SIX family homeobox genes have been demonstrated to be involved in the tumor initiation and progression, but their clinicopathological features and prognostic values in non-small cell lung cancer (NSCLC) have not been well defined. We analyzed relevant datasets and performed a systemic review and a meta-analysis to assess the profile of SIX family members in NSCLC and evaluate their importance as biomarkers for diagnosis and prediction of NSCLC.

Methods

This meta-analysis included 17 studies with 2358 patients. Hazard ratio (HR) and 95 % confidence interval (CI) were calculated to represent the prognosis of NSCLC with expression of the SIX family genes. Heterogeneity of the ORs and HRs was assessed and quantified using the Cochrane Q and I 2 test. Begg’s rank correlation method and Egger’s weighted regression method were used to screen for potential publication bias. Bar graphs of representative datasets were plotted to show the correlation between the SIX expression and clinicopathological features of NSCLC. Kaplan-Meier survival curves were used to validate our prognostic analysis by pooled HR.

Results

The systematic meta-analysis unveiled that the higher expressions of SIX1-5 were associated with the greater possibility of the tumorigenesis. SIX4 and SIX6 were linked to the lymph node metastasis (LNM). SIX2, SIX3, and SIX4 were correlated with higher TNM stages. Furthermore, the elevated expressions of SIX2, SIX4, and SIX6 predicted poor overall survival (OS) in NSCLC (SIX2: HR?=?1.14, 95 % CI, 1.00–1.31; SIX4: HR?=?1.39, 95 % CI, 1.16–1.66; SIX6: HR?=?1.18, 95 % CI, 1.00–1.38) and poor relapse-free survival (RFS) in lung adenocarcinoma (ADC) (SIX2: HR?=?1.42, 95 % CI, 1.14–1.77; SIX4: HR?=?1.52, 95 % CI, 1.09–2.11; SIX6: HR?=?1.25, 95 % CI, 1.01–1.56).

Conclusions

Our report demonstrated that the SIX family members play distinct roles in the tumorigenesis of NSCLC and can be potential biomarkers in predicting prognosis of NSCLC patients.
  相似文献   

18.

Background

The tyrosine kinase Src is involved in the progression of many cancers. Moreover, inhibiting Src activity has been shown to obstruct several signaling pathways regulated by the EGFR. Thus, Src is a valuable target molecule in drug development. The purpose of this study was to identify compounds that directly or indirectly modulate Src to suppress lung cancer cell growth and motility and to investigate the molecular mechanisms underlying the effects of these compounds.

Methods

Human non-small cell lung cancer (NSCLC) cell lines (PC9, PC9/gef, A549, and H1975) with different EGFR statuses were tested by cytotoxicity and proliferation assays after AC-93253 iodide treatment. Src and Src-related protein expression in AC-93253 iodide-treated PC9, PC9/gef, and A549 cells were assessed by western blotting. The effects of AC-93253 iodide on cancer cell colony formation, invasion, and migration were assessed in PC9 and PC9/gef cells. The synergistic effects of gefitinib and AC-93253 iodide were evaluated by combination index (CI)-isobologram analysis in gefitinib-resistant cell lines. The efficacy of AC-93253 iodide in vivo was determined using nude mice treated with either the compound or the vehicle.

Results

Among the compounds, AC-93253 iodide exhibited the most potent dose-independent inhibitory effects on the activity of Src as well as on that of the Src-related proteins EGFR, STAT3, and FAK. Furthermore, AC-93253 iodide significantly suppressed cancer cell proliferation, colony formation, invasion, and migration in vitro and tumor growth in vivo. AC-93253 iodide sensitized tumor cells to gefitinib treatment regardless of whether the cells were gefitinib-sensitive (PC9) or resistant (H1975 and PC9/gef), indicating that it may exert synergistic effects when used in combination with established therapeutic agents. Our findings also suggested that the inhibitory effects of AC-93253 iodide on lung cancer progression may be attributable to its ability to modulate multiple proteins, including Src, PI3K, JNK, Paxillin, p130cas, MEK, ERK, and EGFR.

Conclusions

Our data suggest that AC-93253 iodide inhibits NSCLC cell growth and motility by regulating multiple Src-related pathways. Our findings may facilitate the development of therapeutic strategies and anti-tumor drugs that may be useful for treating lung cancer in the future.
  相似文献   

19.

Background

Numerous studies have shown that Id-1 (Inhibitor of differentiation 1) is upregulated in several cancers and associated with tumor malignant characters. However, the clinical significance and biological role of Id-1 in non-small cell lung cancer (NSCLC) remains unclear.

Methods

We used RT-PCR, Western blot and Immunohistochemistry to measure Id-1 expression in NSCLC tissues and matched adjacent noncancerous tissues. The expression pattern of Id-1 in NSCLC tissues was determined by scoring system of immunohistochemical analysis. The Kaplan-Meier method was used to calculate the survival curve, and log-rank test to determine statistical significance. The Id-1 gene was overexpressed or downreuglated with Lentiviral vectors in NSCLC cells. And, the migration ability of NSCLC cells was tested in a Transwell Boyden Chamber.

Results

We found that Id-1 is generally expressed higher in NSCLC tissues compared with matched adjacent noncancerous tissues. We also found that high Id-1 expression in tumor tissues is significantly correlated with tumor progression and poor survival in NSCLC patients. Furthermore, our experimental data revealed that knockdown of Id-1 significantly suppressed the proliferation, migration and invasion of NSCLC cells, whereas ectopic expression of Id-1 promoted the malignant phenotype of NSCLC cells. Mechanistic study showed that NF-κB signaling pathway contributed to the effects of Id-1 in NSCLC cells. Moreover, blocking the NF-κB pathway significantly inhibited the tumor-promoting actions of Id-1 in NSCLC cells.

Conclusions

We identified a tumorigenic role of Id-1 in NSCLC and provided a novel therapeutic target for NSCLC patients.
  相似文献   

20.

Background

Inhibition of nonsense-mediated mRNA decay (NMD) in tumor cells can suppress tumor growth through expressing new antigens whose mRNAs otherwise are degraded by NMD. Thus NMD inhibition is a promising approach for developing cancer therapies. Apparently, the success of this approach relies on the basal NMD activity in cancer cells. If NMD is already strongly inhibited in tumors, the approach would not work. Therefore, it is crucial to assess NMD activity in cancers to forecast the efficacy of NMD-inhibition based therapy.

Methods

Here we develop three metrics using RNA-seq data to measure NMD activity, and apply them to a dataset consisting of 72 lung cancer (adenocarcinoma) patients.

Results

We show that these metrics have good correlations, and that the NMD activities in adenocarcinoma samples vary among patients: some cancerous samples show significantly stronger NMD activities than the normal tissues while some others show the opposite pattern. The variation of NMD activities among these samples may be partly explained by the varying expression of NMD effectors.

Conclusions

In sum, NMD activity varies among lung cancerous samples, which forecasts varying efficacies of NMD-inhibition based therapy. The developed metrics can be further used in other cancer types to assess NMD activity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号