首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The growth rate of Weibel instability in a plasma interacting with a high-frequency pulse with a duration less or comparable with the electron mean free time is determined. The growth rate is shown to decrease with decreasing pulse duration. It is found that instability can develop after the short pulse is switched off and the generated magnetic field no longer affects electron motion in the high-frequency field.  相似文献   

2.
The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.  相似文献   

3.
The interaction of an expanding laser plasma with a uniform external magnetic field is studied over a wide range of experimental parameters (for a plasma energy of up to 300 J and a magnetic induction of up to 8 kG). By analyzing the data from these and other experiments, as well as the results of simulations with the use of a two-fluid Hall plasma model, it was found for the first time that the flute instability of the plasma boundary plays a decisive role in the process of the plasma cloud expansion. It is shown that, when the ion Larmor radius is sufficiently large, this instability can significantly affect the maximum radius of the diamagnetic cavity of the plasma cloud and the deceleration of its front by the magnetic field. A physical model based on the Hall effect is proposed to explain such influence. The model adequately describes data from one-dimensional simulations, as well as from experiments with quasi-spherical laser plasma clouds. The results obtained can be helpful in interpreting the data from active magnetospheric experiments with barium plasma clouds (such as AMPTE) and analyzing the plasma dynamics in future ICF reactors and propulsion systems with a magnetic field for direct conversion of fusion energy into electric energy.  相似文献   

4.
The effect of an RF field on a steady-state beam-plasma discharge with a plane electrode placed parallel to a sheetlike electron beam is studied experimentally. The plasma parameters were measured by a single probe, and the electron distribution function was determined with the use of an electrostatic analyzer. The energy and current of the electron beam were E B=2.5 keV and J B=0.05–1.5 A, respectively. The working pressure was p=2×10?5–10?3 torr. The frequency of the external RF field was 13.56 MHz. Both the steady-state regimes in which the RF field had no effect on the plasma parameters and regimes with a pronounced effect of the RF field were observed. The experiments show that the regime of the discharge depends strongly on the plasma density and the magnetic field. The parametric instability is studied theoretically in the weak-turbulence approximation. It is shown that, due to the decay nature of the spectrum of plasma oscillations, the onset of instability is accompanied by the transfer of the energy of fluctuations over the spectrum, from the pump frequency toward its harmonics.  相似文献   

5.

An exact solution is derived to the equations of vortex electron anisotropic hydrodynamics for a plasma that is unstable against the Weibel instability driven by the electron temperature anisotropy. This solution describes saturation of the Weibel instability in the single-mode regime with an arbitrary wavelength and corresponds to a standing helical wave of magnetic perturbations in which the amplitude of the generated magnetic field varies periodically over time. The longitudinal and transverse (with respect to the rotating anisotropy axis) plasma temperatures are subject to the same periodic variations. In this case, the maximum magnetic field energy can be on the order of the plasma thermal energy.

  相似文献   

6.
Cherenkov emission from a short laser pulse propagating in an underdense plasma along a constant magnetic field is considered. The spectral, angular, energy, and spatiotemporal parameters of the emitted radiation are investigated. It is shown that the spectral content of the radiation and its directionality depend sensitively on the plasma and laser-pulse parameters. For instance, the most intense backward radiation at the upper hybrid frequency is generated by a tightly focused laser pulse.  相似文献   

7.
A study is made of the decay instability of a lower hybrid wave with a finite wave vector (k 0≠0) and a large amplitude such that the oscillatory velocity of the electrons with respect to the ions cannot be neglected. It is shown that, depending on the angle between the propagation direction of the lower hybrid wave and the external magnetic field and the angle through which the wave is scattered, the decay instability is primarily governed either by the oscillatory electron motion with respect to the ions or by the nonlinear response of the plasma to the lower hybrid wave propagating in it. The role of the nonlinear frequency shift in the saturation of the lower hybrid decay instability is clarified.  相似文献   

8.
The excitation of quasistatic magnetic fields by a circularly polarized laser pulse in a plasma channel is considered. It is shown that, to second order in the amplitude of the electric field of the laser pulse, circular rotation of the plane of polarization of the laser radiation in a radially nonuniform plasma gives rise to a nonlinear azimuthal current and leads to the excitation of the radial and axial components of the magnetic field. The dependence of the magnetic field distribution over the plasma channel on the spatial dimensions of the pulse and on the channel width is investigated for a moderate-power laser pulse. The structure of the magnetic fields excited by a relativistic laser pulse in a wide plasma channel is analyzed.  相似文献   

9.
Results are presented from numerical simulations of the dynamics of beam instability in a finite plasma volume (plasma-filled cavity) in a weak magnetic field. It is shown that, in such a system, the low group velocity of the plasma waves excited by an electron beam can result in the generation and amplification of an electric field; strong electron heating in the axial region; and, as a consequence, the generation of a high potential at the axis. The quasistatic radial electric field so produced accelerates ions toward the periphery of the plasma column, forming a directed ion beam with an energy much higher than the thermal energy of the bulk plasma electrons.  相似文献   

10.
A collisionless plasma produced by a short ionizing pulse from an X-ray laser is characterized by an anisotropic monoenergetic electron distribution governed by the classical photoeffect. The dispersion properties of such a photoionized plasma are studied. The spectra of high-frequency plasma waves and their damping, as well as the parameters of the aperiodic instability of a photoionized plasma, are described. The relationship between the electrostatic and magnetic perturbations generated by this instability is investigated, and an analysis is made of how the instability transforms into a purely longitudinal (two-stream-like) instability and into a purely transverse (Weibel-like) instability, depending on the absolute value and direction of the wave vector.  相似文献   

11.
A self-consistent set of Hamilton equations describing nonlinear saturation of the amplitude of oscillations excited under the conditions of parametric decay of an elliptically polarized extraordinary wave in cold plasma is solved analytically and numerically. It is shown that the exponential increase in the amplitude of the secondary wave excited at the half-frequency of the primary wave changes into a reverse process in which energy is returned to the primary wave and nonlinear oscillations propagating across the external magnetic field are generated. The system of ??slow?? equations for the amplitudes, obtained by averaging the initial equations over the high-frequency period, is used to describe steady-state nonlinear oscillations in plasma.  相似文献   

12.
Results are presented from studies of the structure and dynamics of current sheets in three-dimensional magnetic configurations with an X line by means of holographic interferometry. It is found that the efficiency of plasma compression into the sheet is reduced as the longitudinal magnetic field B z , directed along the X line, increases. This effect is attributed to the enhancement of the longitudinal component of the magnetic field within the sheet and to the corresponding increase in the magnetic pressure. It is shown that the formation of a plasma sheet lags behind the beginning of the plasma current pulse, the delay time being close to the characteristic Alfvén time.  相似文献   

13.
Kelvin-Helmholtz MHD instability in a plane three-layer plasma is investigated. A general dispersion relation for the case of arbitrarily orientated magnetic fields and flow velocities in the layers is derived, and its solutions for a bounded plasma flow in a longitudinal magnetic field are studied numerically. Analysis of Kelvin-Helmholtz instability for different ion acoustic velocities shows that perturbations with wavelengths on the order of or longer than the flow thickness can grow in an arbitrary direction even at a zero temperature. Oscillations excited at small angles with respect to the magnetic field exist in a limited range of wavenumbers even without allowance for the finite width of the transition region between the flow and the ambient plasma. It is shown that, in a low-temperature plasma, solutions resulting in kink-like deformations of the plasma flow grow at a higher rate than those resulting in quasi-symmetric (sausage-like) deformations. The transverse structure of oscillatory-damped eigenmodes in a low-temperature plasma is analyzed. The results obtained are used to explain mechanisms for the excitation of ultra-low-frequency long-wavelength oscillations propagating along the magnetic field in the plasma sheet boundary layer of the Earth’s magnetotail penetrated by fast plasma flows.  相似文献   

14.
A theoretical study is made of the surface electromagnetic eigenmodes that are excited by an annular charged-particle beam due to dissipative instability and propagate across the external axial magnetic field in a cylindrical metal waveguide partially filled with plasma. A self-consistent set of differential equations for a cold low-density charged-particle beam moving above the plasma surface is constructed in the single-mode approximation and is solved numerically. It is shown that the larger the dissipation, the slower the instability growth rate and the larger the wave amplitude in the saturation stage of the instability. An increase in the transverse dimensions of a charged-particle beam results in a slower growth of the dissipative instability, in which case, however, the beam transfers a larger fraction of its kinetic energy to the wave.  相似文献   

15.
Magnetorotational instability of a weakly ionized accretion disk with an admixture of charged dust grains in a magnetic field with the axial and toroidal components is analyzed. The dispersion relation for perturbations perpendicular to the disk plane is derived with allowance for both the Hall current and the finite transverse plasma conductivity. It is shown that dust grains play an important role in the disk magnetic dynamics. Due to the effect of dust grains, the Hall current can reverse its direction as compared to the case of electron-ion plasma. As a result, the instability threshold shifts toward the short-wavelength range. Under certain conditions, electromagnetic fluctuations of any length can become unstable. It is established that the instability criterion for waves of any scale length is satisfied within a finite interval of the density ratio between the dust and electron plasma components. The width of this interval and the instability growth rate as functions of the plasma parameters and the configuration of the magnetic field in the disk are analyzed.  相似文献   

16.
Kelvin-Helmholtz instability in a three-layer plane geometry is investigated theoretically. It is shown that, in a three-layer system (in contrast to the traditionally considered case in which instability develops at the boundary between two plasma flows), instability can develop at an arbitrary ratio of the plasma flow velocity to the ion-acoustic velocity. Perturbations with wavelengths on the order of the flow thickness or longer can increase even at a zero temperature. The system can also be unstable against long-wavelength perturbations if the flow velocity at one of the boundaries is lower than the sum of the Alfvén velocities in the flow and the ambient plasma. The possibility of applying the results obtained to interpret the experimental data acquired in the framework of the CLUSTER multisatellite project is discussed. It follows from these data that, in many cases, the propagation of an accelerated particle flow in the plasma-sheet boundary layer of the Earth’s magnetotail is accompanied by the generation of magnetic field oscillations propagating with a velocity on the order of the local Alfvén velocity.  相似文献   

17.
Raman scattering in a subcritical plasma is simulated numerically for the case where the laser radiation propagates transversely to an external magnetic field. It is shown that, in the linear stage of Raman instability, the magnetic field decreases the instability growth rate for forward scattering and increases it for backward scattering. As the value of the magnetic field increases, the stochastic heating of plasma electrons is enhanced in the region of backscattering.  相似文献   

18.
The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process.  相似文献   

19.
20.
The nonlinear stage of Kelvin-Helmholtz (KH) instability in a finite-width plane-parallel plasma flow is analyzed. The analysis is performed by means of two-dimensional numerical simulations with the use of ideal magnetohydrodynamic equations describing isothermal plasma flows propagating along the magnetic field. The influence of the magnetic field strength, the plasma temperature, and the ratio of the flow width to the width of the transition layer on the formation of vortex layers and large-scale flow perturbations is investigated. It is shown that, if the wavelength of periodic perturbations is shorter than the flow width, the symmetric and antisymmetric modes develop in a qualitatively similar manner. For waves with wavelengths longer than the flow width, the development of such modes is very different due to the mutual influence of the flow boundaries. Analysis of the development of instability at different values of the Alfvén Mach number M A shows that long-lived vortices with a characteristic scale length on the order of the flow width appear in a weak magnetic field for both symmetric and antisymmetric modes; however, the vortex geometries for these modes are different. In a strong magnetic field, M A ~ 5, the phase of vortex decay for both types of modes occurs faster than in a weak field; however, in the case of an antisymmetric mode, large-scale perturbations of the flow boundary are retained for a longer time. Analysis of the evolution of the initial disturbance produced by an ensemble of random small perturbations (noise) at different plasma temperatures shows that, for a flow width comparable with the width of the transition region, the development of KH instability is always antisymmetric in character and leads to well-developed large-scale perturbations of the flow as a whole. For a cold plasma with C S < 0.5U (where C S is the speed of sound and U is the flow velocity), in contrast to hot plasma with C S > 0.5U, the development of KH instability leads to the growth of the antisymmetric mode even if the flow width is much larger than the width of the transition region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号