共查询到19条相似文献,搜索用时 62 毫秒
1.
棉花秸秆催化热解特性及动力学的研究 总被引:3,自引:0,他引:3
通过热重分析实验观察K2CO3、KOH、KCl、NaCl、MgCl2和ZnCl26种无机催化剂对棉花秸秆热解催化效果的影响。K2CO,、KOH处理过的棉花秆与纯棉花秆相比热解发生在较低的温度范围,而KCl、NaCl、MgCl,和ZnCl2处理过的棉花秆热解发生在较高的温度范围。碱性催化剂K2C03、KOH降低了棉花秸秆的最大质量损失率,而KCl、NaCl、MgCl2和ZnCl2却增大了棉花秸秆的最大质量损失率。应用Ozawa动力学模型得到动力学参数,棉花秸秆在热解主要阶段可由一段一级反应过程描述,升温速率10K/min时活化能值EA的范围是35~66kJ/mol,频率因子自然对数的范围是4~12。 相似文献
2.
以纤维素为原料,以自制的不同硅铝比ZSM-5(38)/Al-MCM-41微-介孔复合分子筛为催化剂,在固定床反应器上进行了催化热解实验。采用XRD表征分子筛,采用GC-MS分析生物油成分,考查了催化剂的改变对生物质热解产物及生物油成分的影响。实验结果表明:添加催化剂后,生物油产率降低,且其含水率也有所增加。与未添加催化剂相比,生物油中D L-2,3-丁二醇有明显提高。其中,ZSM-5(38)/Al-MCM-41(20) 最有利于苯酚、愈创木酚 (2-甲氧基-苯酚) 的生成。此外,这几种催化剂均有利于小分子化合物的生成,其中,ZSM-5(38) 有利于C4~C5化合物的生成,微-介孔复合分子筛则有利于C6~C8化合物的生成。 相似文献
3.
以纤维素为原料,以自制的不同硅铝比ZSM-5(38)/Al-MCM-41微-介孔复合分子筛为催化剂,在固定床反应器上进行了催化热解实验。采用XRD表征分子筛,采用GC-MS分析生物油成分,考查了催化剂的改变对生物质热解产物及生物油成分的影响。实验结果表明:添加催化剂后,生物油产率降低,且其含水率也有所增加。与未添加催化剂相比,生物油中D L-2,3-丁二醇有明显提高。其中,ZSM-5(38)/Al-MCM-41(20)最有利于苯酚、愈创木酚(2-甲氧基-苯酚)的生成。此外,这几种催化剂均有利于小分子化合物的生成,其中,ZSM-5(38)有利于C4~C5化合物的生成,微-介孔复合分子筛则有利于C6~C8化合物的生成。 相似文献
4.
以海洋生物质浒苔为研究对象,并以玉米秸秆(草类生物质)和锯末(木质类生物质)为对照,采用热重分析方法研究了3种生物质的热解特性,并比较了3种生物质之间的热解差异。结果表明,与玉米秸秆和锯末等典型陆生生物质相比,浒苔的热稳定性最低。此外,以不同浓度氧化铝作为催化剂,用热重分析法对其热解过程进行了研究,利用TG-DTG曲线分析了不同催化剂在不同浓度下对其基本热解特性的影响。结果表明,Al2O3对于3种生物质转化率和最大失重速率有显著的影响,其中Al2O3对锯末和浒苔的转化率降低程度比玉米秸秆较明显。考虑到Al2O3具有可调变的表面酸碱性以及多种不同的晶相结构等优点,Al2O3具有较大的的应用价值。 相似文献
5.
重金属镉(Cd)一直是茶叶产品质量安全关注的重点。本研究基于电热蒸发-催化热解-原子吸收光谱仪(SS-ETV-AAS),使用镍材质样品舟,在300 mL/min空气条件下,350 ℃干燥20 s,350~725 ℃灰化55 s;引入300 mL/min氢气与空气反应形成氮氢混合气氛,在725~800 ℃(50 s)下完成Cd的蒸发;之后,在高岭土填料催化热解炉800 ℃和准直管700 ℃条件下,氮氢火焰原子吸收测定镉的含量。方法检出限(LOD)为0.3 ng/g、定量限(LOQ)为1.0 ng/g,R2>0.998,多次测定的相对标准偏差(RSD)为1.8%~8.6%,多种茶叶样品中Cd的测定值与微波消解石墨炉原子吸收光谱法(GFAAS)无显著性差异(P>0.05),Cd的回收率在92%~107%之间。试验结果表明,该方法灵敏度高、稳定性好、简单高效,且无需消解处理,样品分析时间仅为3min,适用于茶叶中Cd的快速检测。 相似文献
6.
全细胞催化作为生物催化的一个重要分支,以完整的细胞为催化剂,避免了细胞裂解和酶纯化步骤,极大地削减了生产成本。同时,细胞壁成分可以保护胞内酶不受外界环境的影响,能够满足对催化剂的低成本和高稳定性的要求。对适宜乙醇、二醇、糖醇等醇类物质生产的菌株以及目前食品、化工工业中利用细胞催化技术生产醇类物质的应用进行综述,探讨提高醇类物质产量的生产策略,以期为细胞催化转化生产醇类物质的研究与工业开发提供参考。 相似文献
7.
【目的】N-乙酰神经氨酸有多种生物学功能,其在治疗流感、神经性疾病、炎症和肿瘤等方面具有重要的医药价值。N-乙酰神经氨酸现有的生产方法产量低、成本高,难以满足医药工业大规模的需求,因而急需建立一种经济高效的生产方法。【方法】在前期研究中,构建了一株产N-乙酰神经氨酸的代谢工程菌(Escherichia coliΔnanTEK/pNA),本研究通过单因素试验对工程菌生物转化生产N-乙酰神经氨酸的过程进行优化,包括工程菌细胞培养条件(培养温度和时间)和全细胞生物转化的各种条件(转化温度、时间、表面活性剂等)。【结果】经过条件优化后,建立了全细胞催化法生产N-乙酰神经氨酸的工艺流程,使N-乙酰神经氨酸的产量提高到294.39 mmol/L。【结论】该方法具有操作简便、高效和经济的优势,为N-乙酰神经氨酸的规模化生产奠定了基础。 相似文献
8.
目的:对一株从广西山口红树林保护区筛选得到的具有广谱抗菌活性的红树林细菌G1进行发酵条件的研究.方法:采用单因素实验法对G1产抗菌活性物质的发酵培养基及培养条件进行研究.结果:确定了红树林细菌G1的最佳发酵培养基为:蔗糖2.0%、酵母粉1.5%、NaCl1%.最佳发酵培养条件为:装液量40%、接种量5%、发酵时间84h、初始pH值8.0,优化后G1发酵液的抗菌活性提高了2倍.结论:初步确定了G1发酵的条件,为工业化生产抗菌活性物质提供了理论依据. 相似文献
9.
生物质气化技术是生物质高值利用的重要技术之一,然而却存在副产品焦油难以处理的问题。为了解决生物质气化过程中副产品焦油的问题,以钙基催化剂为床料,在流化床反应器内开展焦油催化裂解试验。结果表明,钙基催化剂对焦油裂解具有很好的催化作用,可显著提高焦油裂解效率;流化床的操作条件对生物质焦油的催化裂解过程产生了重要影响,即操作温度越高,焦油裂解效率也越高,加入适当比例的水蒸气可以提高焦油裂解效率,且能增大产品气的产量。研究结果显示,添加钙基催化剂后,理想的操作温度为850℃,水蒸气与焦油质量比例为5∶1。研究结果为焦油的再利用相关研究提供了参考。 相似文献
10.
对1株产抑菌物质的海洋真菌Caldariomyces fumago S-5的培养条件的优化进行研究,探讨该菌株的发酵产抑菌物质的性能。通过抗菌谱实验、单因素及正交实验设计研究了该菌株所产抗菌物质的押菌特征和最适发酵条件。结果表明,S-5菌株发酵液对几种G^+和G^-致病细菌具有快速的生长抑制作用,而对真菌没有明显抗菌性。发酵条件优化结果表明:菌株在葡萄糖4%、(NH4)2SO4 0.2%、KCl 0.2%、K2HPO40.2%、Fe2SO4·7H2O 0.002%、MgSO4-2H2O 0.1%、20%马铃薯浸出液的培养基中,控制发酵温度25℃,pH值5.0,接种量1-2cm。菌苔/100mL培养液,摇瓶转速240r/min条件下培养120h,发酵液中抑菌效价最高。实验结果可为该海洋微生物资源的开发利用提供依据。 相似文献
11.
Thangalazhy-Gopakumar S Adhikari S Gupta RB Tu M Taylor S 《Bioresource technology》2011,102(12):6742-6749
This study is focused on hydrocarbon production through changing carrier gas and using zeolite catalysts during pyrolysis. A large reduction in high molecular weight, oxygenated compounds was noticed when the carrier gas was changed from helium to hydrogen during pyrolysis. A catalytic pyrolysis was conducted using two different methods based on how the biomass and catalysts were contacted together. For both methods, there was no significant change in the carbon yield with the change in pyrolysis environment. However, the mixing-method produced higher aromatic hydrocarbons than the bed-method. In addition, two methods were also tested using two ratios of biomass to catalyst. Nonetheless, there was no significant increase in hydrocarbon yield as the catalyst loading was increased from two to five times of biomass in the catalyst-bed method. In contrast to this, a significant increase was noticed for the catalytic-mixing method when the biomass to catalyst loading was increased from 1:4 to 1:9. 相似文献
12.
13.
Outdoor experiments carried out in Florence, Italy (latitude 43.8° N, longitude 11.3° E), using tubular photobioreactors have
shown that in summer the average net productivity of a Spirulina platensis culture grown at the optimal temperature of 35 °C was superior by 23% to that observed in a culture grown at 25 °C. The rates
of night biomass loss were higher in the culture grown at 25 °C (average 7.6% of total dry weight) than in the one grown at
35 °C (average 5%). Night biomass loss depended on the temperature and light irradiance at which the cultures were grown,
since these factors influenced the biomass composition. A net increase in carbohydrate synthesis occurred when the culture
was grown at a low biomass concentration under high light irradiance or at the suboptimal temperature of 25 °C. Excess carbohydrate
synthesized during the day was only partially utilized for night protein synthesis. 相似文献
14.
It is acknowledged that trees biomass allocation in response to environmental conditions. However, it remains poorly understood what strategies of plant biomass allocation with inter- and intraspecific interactions of tree species in forest stands. Such information is important for revealing strategies of plant biomass allocation with plant competition. To address this problem, a study was conducted in Larix principis-rupprechtii plantations to evaluate the impact of plant competition on plant biomass allocation in Shanxi Province, China. We measured a competition index (CI), stem, branch, foliage, and root biomass as well as element content (Carbon (C), Nitrogen (N), Phosphorus (P), Potassium (K)). Stem-foliage ratio (S/F), aboveground–belowground biomass ratio (T/R), average annual increment of biomass (AAB), height (AAH), and DBH (AAD) were calculated. The study found that the competition intensity of neighboring trees was closely related to the partitioning of biomass. Our results demonstrated that competition pressure of neighboring trees was a crucial factor to drive and regulate the distribution of biomass. Predicting biomass allocation–competition relationships could represent a supportive method for improving management of Larix principis-rupprechtii plantations in Mountain Taiyue areas. 相似文献
15.
Depending on the biomass yield on glucose and the cell morphology ofBacillus thuringiensis, three different metabolic states were observed in continuous culture. At dilution rates between 0.18 h–1 and 0.31 h–1 vegetative cells, sporulating bacteria and spores coexisted, while glucose and amino acids were consumed. Only vegetative cells were observed at dilution rates between 0.42 h–1 and 0.47 h–1 and glucose was used as the main carbon and energy source. AtD = 0.50 h–1 the biomass yield on glucose decreases sharply. To define better the specific growth rate range in which the microorganism uses mainly glucose, a dilution rate of 0.25–0.45 h–1 was studied. The experimental data could be adjusted to a Monod model and the following rate coefficients and growth yields were determined: maximum specific growth rate 0.54 h–1, saturation constant 0.56 mg glucose ml–1, biomass growth yields 0.43 g cells (g glucose)–1, and 0.76 g cells (g oxygen)–1, and maintenance coefficients 0.065 g glucose (g cells)–1 h–1 and 0.039 g oxygen (g cells)–1 h–1. 相似文献
16.
B. R. Rajeswara Rao P. N. Kaul G. R. Mallavarapu S. Ramesh 《Biochemical Systematics and Ecology》1996,24(7-8):627-635
Variations in biomass yield, essential oil yield and terpenoid composition in rose-scented geranium (Pelargonium species) in response to seasonal climatic changes were investigated under semiarid tropical climatic conditions. A large number of essential oil samples were collected during different seasonal months (once a month) and daily during the peak summer season months of May and June. They were analysed for terpenoid composition by GC and GC-MS. The crop yielded the lowest values for biomass yield, essential oil yield and essential oil concentration in the summer months of April to June. Evaluation of terpenoid compositions showed minimum concentrations (% of essential oil) of linalool, geraniol and its esters and maximum concentrations of citronellol and its esters during summer months. The percentages of geraniol and its esters were highest during cool winter season months of December and January followed by rainy and autumn season months. Isomenthone, 10-epi-gamma-eudesmol and other minor terpenoid compounds (present in <1% amounts in the essential oil) did not exhibit any definite seasonal trends. Rainy/monsoon (August and September) and autumn (October and November) season months were characterised by high rainfall, cloudy days and short photoperiods. These favourable environmental conditions encouraged crop growth and produced highest biomass yields, essential oil yields and maximum concentration of essential oil in rose-scented geranium plants. 相似文献
17.
《Process Biochemistry》2014,49(5):791-796
Microencapsulated cell preparation technology was applied to the hydrolysis of glycyrrhizin (GL) with Penicillium purpurogenum Li-3 whole-cell catalytic technology into glycyrrhetinic acid monoglucuronide (GAMG) possessing better bioavailability, sweetness, and security. The effect of the key techniques and technological conditions used for preparation of alginate–chitosan microencapsulated P. purpurogenum Li-3 strain cell on its usability was investigated. Results showed that technological conditions were crucial for microencapsulated cells to play the best. After cells were microencapsulated, mass transfer efficiency decreased slightly, resulting in a small decrease in catalytic activity. However, the cells obtained valid protection following microencapsulation, and thus exhibited better growth. Moreover, after continuous use for 12 batch cycles, 50.11% residual activity of the microencapsulated cells remained, and the breakage rate of microcapsules was only 6.4%. Therefore, microencapsulated P. purpurogenum Li-3 strain cells possessed comparatively high mechanical strength and stability. 相似文献
18.
Hao Zhang Gen-Xuan Wang Zhu-Xia Shen Xing-Zheng Zhao Mu-Qing Qiu 《Acta Physiologiae Plantarum》2006,28(4):373-379
The allometric relationships for plant daily biomass production rates, different measures of body size (dry weight and length)
and photosynthetic biomass per plant are reported for two mutants of Arabidopsis thaliana (abi1-1, insensitive to ABA; era1-2, hypersensitive to ABA). Scaling relationships, such as daily rate of growth (G) vs body mass (M), plant body length or plant height (L) vs body mass (M), photosynthetic biomass (M
p
) vs non-photosynthetic biomass (M
n
), and daily rate of growth (G) vs. photosynthetic biomass (M
p
) were significantly different in abi1-1 and era1-2. It is implied that the sensitivity to abscisic acid may change the scaling relationships for plant biomass production rate
and body size in Arabidopsis thaliana. Because these scaling relationships are closely related to sensitivity to abscisic acid, they are of importance for phytohormonal
ecology. 相似文献
19.
The profiles of photon flux density incidented on a tubularloop photobioreactor in the day could be altered by inclining the bioreactor at an angle with the horizontal. The photon flux density at noon decreased with increasing angle of inclination, whereas the photon flux density in the early morning and late afternoon increased with increasing angle of inclination. The overall photosynthetic radiance received by the bioreactor inclined at 0, 25, 45, and 80 degrees was 1:0.89:0.77:0.62. Regardless of the angle of bioreactor inclination, the overall biomass output rate of a fed-batch culture over an 8-h/day period was comparable (26-36 g-biomass m(-2) bioreactor surface area day(-1)). As a bioreactor inclined at an angle occupied smaller land area, and daily biomass output rate per land area of a bioreactor inclined at 80 degrees (130 g-biomass m(-2) land) was about six times of that obtainable at horizontal position (21-g biomass m(-2) land). The bioenergetics growth yield from the absorbed photosynthetic radiance was not a constant but an inverse function of the photon flux density. The quasi-steady state chlorophyll content of the Chlorella cells varied between 36 and 63 mg g(-1) cells. Photoinhibition of the maximum photosynthetic capacity was not observed in this study. 相似文献