首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.  相似文献   

2.
The effects of high (15 mM) and low (0.75 mM) solution nitratelevels on nitrogen metabolism in three genotypes (IL 7A, IL13 and IL 21) of winged beans [Psophocarpus tetragonolobus (L.)DC.] and one genotype (Williams) of soya bean [Glycine max (L.)Merrill] were investigated. Plants were grown for 42 days ina greenhouse in solution culture prior to sampling. The 15 mM nitrate treatment resulted in greater growth of allplant parts except roots. Growth of soya beans was more responsiveto nitrate level than was growth of winged beans. The high nitratelevel inhibited nodulation in all plants. The IL 13 and IL 21winged bean genotypes had similar nitrogenase activity (acetylenereduction per plant) as the soya bean and IL 7A winged beangenotype had lower activity. However, the IL 13 winged beangenotype had higher nitrogenase activity (acetylene reductionper unit nodule mass) than the other three genotypes which allhad similar activity. The 15 mM solution nitrate level stimulatedleaf and root nitrate reductase (NR) activity for all plants.All winged bean genotypes had higher leaf NR activity and higherpercentage reduced- and nitrate-nitrogen contents of leavesand stems compared with soya beans. However, total protein (reducednitrogen) was greater in soya beans when sampled indicatingthat more nitrate had been metabolized by soya beans than bywinged beans during the 42-day growth period. Psophocarpus tetragonolobus (L.) DC., winged bean, Glycine max (L.) Merrill, Soya bean, nitrate reductase, nitrogen fixation, nitrogenase activity, nodulation  相似文献   

3.
Co-inoculation of plant growth promoting rhizobacteria (PGPR)withBradyrhizobium has been shown to increase legume nodulationand nitrogen fixation at optimal soil temperatures. Nine rhizobacteriaco-inoculated withBradyrhizobium japonicum532C were tested fortheir ability to reduce the negative effects of low root zonetemperature (RZT) on soybean [Glycine max(L.) Merr.] nodulationand nitrogen fixation. Three RZTs were tested: 25 (optimal),17.5 (somewhat inhibitory), and 15°C (very inhibitory).At each temperature some PGPR strains increased the number ofnodules formed and the amount of fixed nitrogen when co-inoculatedwithB. japonicum,but the stimulatory strains varied with temperatures.The strains that were most stimulatory varied among temperaturesand were as follows: 15°C,Serratia proteamaculans 1-102;17.5°C,S. proteamaculans 1-102andAeromonas hydrophilaP73;25°C,Serratia liquefaciens2-68. Bradyrhizobium japonicum ; Glycine max; plant growth promoting rhizobacteria; suboptimal root zone temperatures  相似文献   

4.
Control of Seed Growth in Soya Beans [Glycine max (L.) Merrill]   总被引:2,自引:0,他引:2  
The seed is the primary sink for photosynthate during reproductivegrowth and an understanding of the mechanisms controlling therate of seed growth is necessary to understand completely theyield production process. The growth rate of individual seedsof seven soya bean [Glycine max (L.) Merrill] cultivars withgenetic differences in seed size varied from 10.8 to 3.9 mgseed–1 day–1. The growth rates were highly correlatedwith final seed size. The growth rate of cotyledons culturedin a complete nutrient medium was highly correlated with thegrowth rate of seeds developing on the plant and with finalseed size. The number of cells per seed in the cotyledons variedfrom 10.2 to 5.7 x 106 across the seven cultivars. The numberof cells per seed in the cotyledons was significantly correlatedwith final seed size and the seed growth rate both on the plantand in the culture medium. The data suggest that genetic differencesin seed growth rates are controlled by the cotyledons and thenumber of cells in the cotyledons may be the mechanism of control. Glycine max L., soya bean, seed size, growth rate, cell number, sink activity  相似文献   

5.
Application of plant growth-promoting rhizobacteria (PGPR) hasbeen shown to increase legume growth and development under optimaltemperature conditions, and specifically to increase nodulationand nitrogen fixation of soybean [Glycine max (L.) Merr.] overa range of root zone temperatures (RZTs). Nine rhizobacteriaapplied into soybean rooting media were tested for their abilityto reduce the negative effects of low RZT on soybean growthand development by improving the physiological status of theplant. Three RZTs were tested: 25, 17.5, and 15 °C. At eachtemperature some PGPR strains increased plant growth and development,but the stimulatory strains varied with temperature. The strainsthat were most stimulatory at each temperatures were as follows:15 °C—Serratia proteamaculans 1–102; 17.5 °C—Aeromonashydrophila P73, and 25 °C—Serratia liquefaciens 2–68.Because enhancement of plant physiological activities were detectedbefore the onset of nitrogen fixation, these stimulatory effectscan be attributed to direct stimulation of the plant by thePGPR rather than stimulation of plant growth via improvementof the nitrogen fixation symbiosis. Legume; nitrogen fixation; nodulation; root zone temperature; PGPR  相似文献   

6.
Soya Bean Seed Growth and Maturation In vitro without Pods   总被引:2,自引:0,他引:2  
Immature Glycine max (L.) Merrill seeds, initially between 50and 450 mg f. wt, were grown and matured successfully in vitro.Excised seeds were floated in a liquid medium containing 5 percent sucrose, minerals and glutamine in flasks incubated at25 °C under 300 to 350 µE m–2 s–1 fluorescentlight. During 16 to 21 d in culture, seeds grew to a matured. wt of 100 to 600 mg per seed at an average rate of 5 to 25mg d. wt per seed d–1 depending on initial size. Growthrates were maximal during the first 8 to 10 d in vitro but declinedwith loss of green colour in the cotyledons. Seed coats rupturedwith rapid cotyledon expansion during the first 2 d in culture.Embryos were tolerant to desiccation and 80 to 90 per cent germinatedif removed from culture before complete loss of green colour.The growth of excised seeds in vitro exceeded the growth ofseeds in detached pods, but when windows were cut in pods topermit direct exposure of seeds to the medium, seed growth wascomparable. Glycine max (L.) Merrill, soya bean, seed culture, seed growth, seed maturation, germination  相似文献   

7.
Soybean [Glycine max (L.) Merrill] seeds and cotyledons weregrown in an in vitro culture system to investigate the relationshipsbetween cell expansion (net water uptake by the seed) and drymatter accumulation. Seeds or cotyledons grown in a completenutrient medium containing 200 mol m–3 sucrose continueddry matter accumulation for up to 16 d after in planta seedsreached physiological maturity (maximum seed dry weight). Seedor cotyledon water content increased throughout the cultureperiod and the water concentration remained above 600 g kg–1fresh weight. These data indicate that the cessation of seeddry matter accumulation is controlled by the physiological environmentof the seed and is not a pre-determined seed characteristic.Adding 600 mol m–3 mannitol to the medium caused a decreasein seed water content and concentration. Seeds in this mediumstopped accumulating dry matter at a water concentration ofapproximately 550 g kg–1. The data suggest that dry matteraccumulation by soybean seeds can continue only as long as thereis a net uptake of water to drive cell expansion. In the absenceof a net water uptake, continued dry matter accumulation causesdesiccation which triggers maturation. Key words: Glycine max (L.) Merrill, solution culture, duration of seed growth, water content, dry matter accumulation  相似文献   

8.
We were interested in determining whether the low protein contentof pea seeds (Pisum sativum L.) as compared to soya bean seeds(Glycine max L. Merrill) might be due to faster degradationof the pea storage proteins during development of the seed.Pea and soya bean cotyledons were subjected to a ‘pulse-chase’experiment using [3H]glycine in in-vitro cultures. In peas,legumin had a half-life of 146 days, while vicilin had a half-lifeof 39 days. There was no measureable degradation of soya beanstorage proteins. Even with the pea storage proteins, the half-liveswere so much longer than the maturation time of seeds that degradationof storage proteins could not account for the lower proteincontent of peas as compared to soya beans. The validity of theseresults was indicated by the finding that non-storage proteinshad much shorter half-lives and that omission of a carbon ora nitrogen source greatly accelerated degradation. Labelledglycine was found to be a good probe for protein turnover studiesbecause it was very rapidly metabolized. Glycine max L. Merrill, soya bean, Pisum sativum, L. pea, protein turnover, storage proteins, legumin, vicilin  相似文献   

9.
Seven characteristics of pod anatomy were studied for theirassociation with resistance to pod-shattering in 16 soybean[Glycine max (L.) Merrill] varieties and strains. The thicknessand length of the bundle cap on the dorsal side of the pod andpod-wall thickness were found to be significantly negativelycorrelated with the degree of pod-shattering. Further statisticalanalyses confirmed that these three anatomical characters werealmost equally important and could potentially serve as criteriafor the selection of resistance to pod-shattering. The identifiedtraits/sites in the pod represent sclerenchymous structuresand may provide the structural basis of resistance to pod-shatteringin soybean.Copyright 1995, 1999 Academic Press Pod, anatomy, shattering, soybean, Glycine max (L.) Merrill  相似文献   

10.
Seed swelling, germination, root extension, lateral root initiationand shoot growth were studied in soils of different water contents,using non-destructive, serial neutron radiography. Seeds fromthree varieties of soya beans (Glycine max L.) and one varietyeach of maize (Zea mays L.) and vetch (Vicia sativa L.) wereused. The seeds germinated when they had increased in size bya certain amount, if germination is taken as the time when theradicle first appears. The rate at which roots and shoots extendalso depend on soil water content. Glycine max L., Vicia sativa L., Zea mays L., Soya bean vetch, maize, seed germination, root extension, lateral root initiation, neutron radiography  相似文献   

11.
Field experiments using two soybean (Glycine max L. Merrill)cultivars (‘Elgin 87’ and ‘Essex’) wereconducted for 2 years near Lexington, KY, USA to evaluate theeffect of source-sink alterations on seed carbohydrate statusand growth. Sucrose concentrations in developing cotyledonsof control plants were consistently low (<50 m M) early inseed development, but they increased to 100–150 m M byphysiological maturity. The concentrations increased in bothyears by 47 to 59% when 90% of the pods were removed from ‘Elgin87’, but the increase had no effect on individual seedgrowth rate (SGR). Shading (80%) reduced cotyledon sucrose levelsand SGR in both years. The critical cotyledon sucrose concentration(the concentration providing 80% of the maximum cotyledon growthrate) was estimated fromin vitro cotyledon growth at sucroseconcentrations of 0–200 m M. These critical concentrationsvaried from 72–124 m M;in planta control cotyledon sucroseconcentrations were below this critical level during the firsthalf of seed growth but exceeded it in the later stages of growthin all experiments. The estimated critical concentration wasconsistent with the failure of in planta SGR to respond to anincrease in assimilate supply and with the reduction in SGRassociated with a decrease in assimilate supply. The resultssuggest that soybean SGR is generally sink limited if photosynthesisincreases during seed filling, but source limited if photosynthesisis reduced. Copyright 2001 Annals of Botany Company Glycine max(L.) Merrill, soybean, source-sink ratios, sucrose, starch, depodding, shade, in vitro culture  相似文献   

12.
Erickson and Michelini (1957) derived the plastochron index(PI) and a term sometimes referred to as the plastochron ratio(PR), as quantitative expressions of the vegetative developmentof plants. With the stable plant growth in environmental chambersand glasshouses, the assumptions used to derive these termshave been validated. However, more recently these expressionsare being used to characterize growth under the unstable conditionsresulting from the imposition of stress. This study examinesthe validity of the assumptions used to derive PI and PR forfield-grown soya beans [Glycine max (L.) Merrill] subjectedto drought stress. Under stress conditions, the assumptionswere not satisfied. In fact, observing change in PR appearedto be a good method for detecting drought stress in these plants.An alternate method for calculating PI based on a single, youngleaf was developed. This alternate method appeared to be a moresensitive indicator of changes in leaf emergence rate underunstable conditions. Plastochron index, plastochron ratio, Glycine max (L.), soya bean, drought, leaf growth  相似文献   

13.
The complete removal of the reproductive structures once andshoot apices of soybeans (Glycine max L. Merrill) during earlyanthesis but before the rapid seed development stage significantlyincreased flowering and pod set in greenhouse and field grownplants. The treated plants had darker green leaves, shorterstems and petioles and retained their chlorophyll content longerthan control plants. Pod maturation was also delayed. Althoughdecapitation and the removal of reproductive structures increasedthe number of 3- or more-seeded pods in all varieties tested,seed weight per plant was not consistently increased. The possibleinvolvement of endogenous hormones in pod set and multi-loculepod production in soybeans is discussed. Key words: Glycine max (L.) Merr, Reproductive structures, Shoot apex, Growth, Flowering, Pod set, Multi-locule pods  相似文献   

14.
Utilization of Nitrogen Sources by Immature Soybean Cotyledons in Culture   总被引:2,自引:0,他引:2  
HAGA  K. I.; SODEK  L. 《Annals of botany》1987,59(6):597-601
Immature Glycine max (L.) Merrill cotyledons were cultured ina defined medium containing different nitrogen sources. Glutaminewas the most efficient source in terms of protein accumulationin the cotyledons. Asparagine was less efficient (about 70 percent that of glutamine) while allantoin was a poor source ofnitrogen. This was also true for older cotyledons where asparaginaseand allantoinase activities were maximal. The utilization ofboth asparagine and allantoin (but not glutamine) was totallyinhibited by methionine sulfoximine suggesting that their metabolisminvolves ammonia assimilation via glutamine synthetase. Apparently,neither exogenous or endogenously-generated ammonia had mucheffect on glutamine utilization, but ammonia did have a smallinhibitory effect on asparagine, which may in part account forthe lower efficiency observed with this amide. Glycine max, soybean, cotyledon culture, nitrogen metabolism  相似文献   

15.
Growth and symbiotic performance of soybean (Glycine max (L.)Merrill) cv. Bragg and three of its induced nodulation mutants(nod49, non-nodulating; ntsl 116, intermediate supernodulator;nts1007, extreme supernodulator) were compared throughout developmentunder different nitrogen regimes (0, 2, 5 and 10 mol nitratem–3). Nitrogen fixation was assessed using 15N-isotopedilution and xylem sap analysis for ureide content. Both techniquesconfirmed a complete lack of N2 fixation activity in nod49.Plant reliance on nitrogen fixation by the other genotypes wasdependent on the nitrate regime and the developmental stage.The ntsl007 and ntsl 116 mutants fixed more nitrogen than theparent cultivar in the presence of 10 mol m–3 nitratein the nutrient solution, but higher input of symbioticallyderived nitrogen was still insufficient to offset the amountof nitrogen removed in the harvested seed. However, the mutantsutilized less nitrate for growth than Bragg. Comparison of estimatesof N2 fixation derived from the 15N-dilution technique withthose based on relative ureide content of xylem sap indicatedthat the latter offered a simple and reliable procedure forevaluating the symbiotic performance of supernodulating plants. Key words: 15N-isotope dilution, supernodulation, ureides  相似文献   

16.
Negative linear relations were detected (P < 0·005)between the rate of progress from sowing to panicle initiationand CO2 concentration (210-720 µmol CO2 mol-1 air) fortwo genotypes of sorghum [Sorghum bicolor (L.) Moench]. Relationsbetween CO2 concentration and the rate of progress from sowingto first flowering were also negative in soyabean [Glycine max(L.) Merrill] (P < 0·025), but positive in cowpea[Vigna unguiculata (L.) Walp.] (P < 0·025), albeitthat in both grain legumes sensitivity was much less than insorghum. Thus CO2 elevation does not delay flowering in allshort-day species. The considerable effect of CO2 concentrationon times to panicle initiation resulted in large differencesamong the sorghum plants at this developmental stage; with increasein CO2 concentration, plants were taller with slightly moreleaves and more pronounced apical extension. At the same timeafter sowing however, sorghum plants were heavier (P < 0·05)at 210 than at 360 µmol CO2 mol-1 air. In contrast, relationsbetween the dry masses of the soyabean and cowpea plants andCO2 concentration were positive and curvilinear (P < 0·05).It is suggested that the impact of global environmental changecould be severe for sorghum production in the semi-arid tropics.Copyright1995, 1999 Academic Press Sorghum bicolor (L.) Moench., sorghum, Glycine max (L.) Merrill, soyabean, Vigna unguiculata (L.) Walp., cowpea, development, flowering, CO2, dry matter accumulation, environmental change  相似文献   

17.
Floral development includes initiation of floral primordia andsubsequent anthesis as discrete events, even though in manyinvestigations only anthesis is considered. For ‘Ransom’soya bean [Glycine max (L.) Merrill] grown at day/night temperaturesof 18/14, 22/18, 26/22, 30/26, and 34/30 °C and exposedto photoperiods of 10, 12, 14, 15, and 16 h, time of anthesisranged from less than 21 days after exposure at the shorterphotoperiods and warmer temperatures to more than 60 days atlonger photoperiods and cooler temperatures. For all temperatureregimes, however, floral primordia were initiated under shorterphotopenods within 3 to 5 days after exposure and after notmore than 7 to 10 days exposure to longer photoperiods. Onceinitiation had begun, time required for differentiation of individualfloral primordia and the duration of leaf initiation at shootapices increased with increasing length of photoperiod. Whileproduction of nodes ceased abruptly under photoperiods of 10and 12 h, new nodes continued to be formed concurrently withinitiation of axillary floral primordia under photoperiods of14, 15 and 16 h. The vegetative condition at the main stem shootapex was prolonged under the three longer photoperiods and issuggestive of the existence of an intermediate apex under theseconditions. The results indicate that initiation and anthesisare controlled independently rather than collectively by photoperiod,and that floral initiation consists of two independent steps—onefor the first-initiated flower in an axil of a main stem leafand a second for transformation of the terminal shoot apex fromthe vegetative to reproductive condition. Apical meristem, intermediate apex, floral initiation, anthesis, photoinduction, Glycine max(L.) Merrill, soya bean, photoperiod, temperature  相似文献   

18.
Factorial combinations of five photoperiods (8 h 20 min, 10h, 11 h 40 min, 13 h 20 min and 15 h) and three night temperatures(14, 19 and 24 C) combined with a single day temperature (30C) were imposed on nodulated plants of nine soya bean genotypes[Glycine max (L.) Merrill] grown in pots in growth cabinets.The times to first appearance of open flowers were recorded.For a photoperiod-insensitive cultivar, and for the remainingeight photoperiod-sensitive genotypes in photoperiods shorterthan the critical daylength, the rates of progress towards flowering(the reciprocals of the times taken to flower) were linear functionsof mean diurnal temperature. For all photoperiod-sensitive genotypes,times to flowering in photoperiods longer than the criticaldaylength increased as inverse functions of both increasingphotoperiod and decreasing temperature. A consequence of thesetwo relations is that the critical daylength becomes longerwith higher mean temperatures. In the five photoperiod-sensitivegenotypes which flowered in all environments before the experimentwas terminated (after 150 d) the delays in flowering due tolow temperatures or long photoperiods were limited by a maximumperiod to flowering specific for each genotype. These resultsare discussed in relation to the development of a simple techniquefor the large-scale screening of soya bean germplasm to determinephoto-thermal response surfaces for flowering. Glycine max (L.) Merrill, soya bean, flowering, photoperiod, temperature, screening, germplasm  相似文献   

19.
Soybean (Glycine max (L.) MERR. CV. ‘Amsoy’) plants were grown for 40 days in nutrient solution at various concentrations of ammonium. Maximum yield of dry matter was obtained at a concentration of 715 μM. Further increase in the concentration of ammonium resulted in a reduction in growth due to ammonium toxicity which affected both root and shoot development. The pattern of nitrogen accumulation in tops was consistent with the multiphasic uptake of ammonium and can be represented by 2 phases in the range 1.78 X 10-5-3.57 x X 10-3 M of ammonium.  相似文献   

20.
CALOIN  M.; YU  O. 《Annals of botany》1982,49(5):599-607
The kinetics of growth of Dactylis glomerata L. were studiedunder controlled temperature and nutritional conditions at threelevels of irradiance (35·55 and 85 W m–s). Thedry weights of the root and shoot parts of the plants were measuredeach week between the fourth and eleventh weeks after sowing. The growth kinetics were found to be dependent on the levelof irradiance, but no significant differences in the root: totaldry weight ratio were observed. To characterize the effect of illuminance, the experimentalgrowth curves were analysed initially using the logistic model,the adequacy of which is discussed. An extension of the logisticmodel is proposed, represented by the kinetic equation dM/dt= kM, with < 1 and where M is the dry weight of the plant.It is shown that this relationship allows a distinction to bemade between two kinds of plant material according to theirfunctions in the growth process. Dactylis glomerata L., illuminance, growth curves, kinetic analyses, logistic model, shoot:root ratio, partition of assimilates  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号