首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 461 毫秒
1.
Ascorbic acid displays the characteristics of an ideal inducer of tissue-specific function in primary avian tendon cells in culture. It is a highly specific, potent stimulator of collagen synthesis, it demonstrates slow reversible kinetics, and it has no effect on growth rate of the cultured cells. Kinetic analysis of ascorbate induction of collagen synthesis was used to determine the critical steps in this complex biosynthetic pathway. Full hydroxylation of the proline residues in collagen, although probably a necessary step for collagen induction, was in itself not sufficient for achieving either increased secretion or increased synthesis. On the other hand, an increase in secretion rate, which required both the presence of ascorbate and a high cell density, did correlate with the later stimulation in procollagen production. The process of procollagen secretion, therefore, meets the minimal requirements for the rate-limiting step. The fact that the cells maintained a large pool of intracellular procollagen despite changes in the rates of translation or secretion led us to postulate a possible feedback between the level of the internal procollagen pool and the rate of procollagen synthesis.  相似文献   

2.
In low serum (0.2%) medium, ascorbate stimulates primary avian tendon cells to increase procollagen synthesis from 12 to 50% of total protein synthesis. This is reversibly blocked by an increase of serum levels from 0.2 to 3%. Ascorbate in low serum medium has been shown previously to stimulate the procollagen pathway by sequentially increasing by sixfold the secretion rate constant, then translation rates, and finally mRNA levels. We now show that addition of ascorbate to cultures containing 3% serum induces a sixfold increase in the secretion rate constant but translation rates and mRNA levels remain unchanged. In fully induced cells, an increase in serum levels causes a down-regulation of procollagen synthesis. In this case, the translational products of the induced cell are rapidly altered (less than 1 h), with noncollagen protein synthesis being stimulated preferentially over procollagen synthesis. This change is not reflected in procollagen mRNA levels since they remain constant for at least 6 h following addition of high serum. After 48 h in high serum, the induction of procollagen synthesis by ascorbate is reversed and the level of procollagen mRNA drops to that of uninduced cells. The data are consistent with the model that serum acts primarily at the translational level. High serum levels break the coupling in the ascorbate induction process that ties the stimulation of procollagen secretion rates to the increase in procollagen translation rates, and this prevents the maintenance of the induced state.  相似文献   

3.
Ascorbate addition to primary avian tendon cells has been shown previously to cause a approximately 6-fold increase in procollagen translation that is first observable after 4 h and reaches a maximum level after 48 h. Similarly, procollagen mRNA has been shown to increase after ascorbate addition by approximately 6-fold starting at 12 h and reaching a maximum level by 72 h. The rate constant for procollagen secretion is now shown to also react to ascorbate by a 6-fold change. This results in a drop in the half-life of procollagen within the cell from 120 to 20 min. In sharp contrast to the other steps in the procollagen pathway, the change in the secretion rate constant is extremely fast occurring in less than 30 min. Moreover, after ascorbate addition, greater than 80% of the internal procollagen can be secreted at the fast rate. Since this change results from an increase in hydroxylation of proline residues and since the hydroxylation reaction has been localized to the endoplasmic reticulum, this evidence strongly supports the model that the slow step in the secretion pathway is transport out of the endoplasmic reticulum. Further support for this comes from electron microscope autoradiography of [3H]proline-labeled cells where the labeled procollagen pool within the cells was highly localized to the endoplasmic reticulum.  相似文献   

4.
Primary avian tendon (PAT) cells increase the production of procollagen from 10-12% to 40-50% of total protein synthesis in response to the addition of ascorbate and an increasing cell density. We now show that prolyl hydroxylase (PH) also increases its activity by greater than five-fold in response to increasing cell density; but unlike procollagen production, this is independent of the presence of ascorbate. The increased activity is a result of greater enzyme production and not a shift in the ratio of inactive to active forms which remains constant at about 10% of the total enzyme proteins. We present the possibility that at low cell density the levels of PH activity could limit production of collagen.  相似文献   

5.
The effect of 6-O-palmitoyl ascorbate on procollagen mRNA levels, collagen synthesis, and collagen secretion was investigated and compared with the effect of L-ascorbate in human intestinal smooth muscle (HISM) cells in vitro. Collagen synthesis, determined by the incorporation of 3H-proline into pepsin-resistant, salt-precipitated collagen, increased in a concentration-dependent manner in response to palmitoyl ascorbate. There was a twofold increase in collagen synthesis at 2.5 and 5 microM. By contrast, L-ascorbate was required at 4-5 times the concentration for the same response. However, at 20 microM, both palmitoyl and L-ascorbate induced similar 2.7-fold increases in collagen synthesis. Palmitoyl ascorbate induced a 1.6- and 3.5-fold increase in steady-state levels of procollagen I and III mRNA levels respectively, whereas L-ascorbate had no effect. Palmitoyl ascorbate and L-ascorbate induced similar increases in the amounts of newly synthesized procollagen secreted into the medium and in the amounts of collagen types I, III and V accumulating in the cell layer. There was no effect of either palmitoyl ascorbate or L-ascorbate on the activity of a procollagen alpha2 (I) promoter construct transiently transfected into HISM cells. Palmitoyl ascorbate augments HISM cell procollagen synthesis and mRNA levels more efficiently than L-ascorbate. This property may be due to the greater resistance of the ascorbate ester to oxidation and suggests that palmitoyl ascorbate could be an important agent for studies of collagen synthesis in vitro.  相似文献   

6.
Summary High cell density is required for high procollagen expression (50% of total protein synthesis) in primary avian tendon (PAT) cells but the signaling mechanism that triggers this response has been difficult to decipher. By using a quantitative in situ hybridization assay for procollagen mRNA, cell density dependent changes in procollagen expression can be followed at the single cell level. PAT cells can then be shown to respond to the presence of their neighbors over ∼1-mm distance. The cell density signal remains effective independent of the medium volume to cell ratio but becomes sensitive to dispersion and dilution when the medium is agitated. PAT cells respond to a reduction in cell density, when neighboring cells are scraped away, by outgrwoth (∼1 mm) and reestablishment of a cell density gradient in cellular procollagen mRNA levels. However, removing neighboring cells while preventing migration off of their own extracellular matrix retards the drop in procollagen mRNA levels. The evidence, taken as a whole, is consistent with a model whereby the cell density signal is a loosely bound component of the cell layer thereby restricting its diffusion to two dimensions but making it susceptible to dispersion by medium agitation. This work was supported in part by grant CA 37958 from the National Institutes of Health, Bethesda, MD, and in part by the Office of Health and Environmental Research, U.S. Dept. of Energy, Washington, DC, under contract DE-AC03-76SF00098.  相似文献   

7.
The relative amounts of iso-tRNAsGly and iso-tRNAsPro existing in chick embryo tendon are indicative of a specialization of the tRNA population for collagen synthesis. These amounts are not modified (i) in primary avian tendon (PAT) cells in culture for which the procollagen production varies from about 10% of total protein synthesis to 60% and (ii) in tendons from immature chicks, which show a 3-fold decrease of procollagen production with increasing age. The characteristic tRNA pattern was not maintained in cells which had lost the ability to make high levels of collagen as observed in the cases of: (i) PAT cells reaching confluency; (ii) virus-transformed PAT cells and (iii) tendon from adult chick. Our data are consistent with the idea that tendon tRNA specialization for collagen synthesis is a differentiation feature independent of the expression level of the collagenic function but related to its maintenance.  相似文献   

8.
The relative amounts of iso-tRNAsGly and iso-tRNAsPro existing in chick embryo tendon are indicative of a specialization of the tRNA population for collagen synthesis. These amounts are not modified (i) in primary avian tendon (PAT) cells in culture for which the procollagen production varies from about 10% of total protein synthesis to 60% and (ii) in tendons from immature chicks, which show a 3-fold decrease of procollagen production with increasing age. The characteristic tRNA pattern was not maintained in cells which had lost the ability to make high levels of collagen as observed in the cases of: (i) PAT cells reaching confluency; (ii) virus-transformed PAT cells and (iii) tendon from adult chick. Our data are consistent with the idea that tendon tRNA specialization for collagen synthesis is a differentiation feature independent of the expression level of the collagenic function but related to its maintenance.  相似文献   

9.
The role of ascorbate in the production and secretion of procollagen by human intestinal smooth muscle cells and the conditions in culture for optimal ascorbate bioefficacy were studied. Procollagen synthesis and secretion were determined by the incubation of cells with L-[5-3H]proline, and the quantitation of radiolabelled procollagen bands in the cell layer and the culture medium by polycrylamide slab gel electrophoresis and densitometry. When cells were cultured without ascorbate in the culture medium, procollagen secretion into the medium was 75% less than in cells receiving fresh ascorbate daily. In the cell layer, in contrast, procollagen accumulation was fourfold greater in the scorbutic cells than in the ascorbate-replete cells. These findings contrasted with those in a control line of scorbutic human dermal fibroblasts in which a 95% decrease in procollagen secretion was not associated with any procollagen accumulation in the cells. In the intestinal smooth muscle cells, the absence of ascorbate resulted in a 25 and 50% decrease in steady-state levels of procollagen I and III mRNA, respectively, compared to a 40 and 75% decrease in fibroblasts. Heat inactivation of the serum in the culture medium augmented the promotion of procollagen secretion by ascorbate two- to fourfold. L-ascorbate phosphate did not increase the activity of L-ascorbate when replaced in medium either daily or every 4 days, and its efficacy was not augmented by serum heat inactivation. The changing of culture medium induced collagen secretion in the absence of ascorbate, but this process was markedly enhanced by ascorbate and induced a transient decrease in the steady-state levels of both procollagen and nonprocollagen mRNAs. The predominant action of L-ascorbate on HISM cells in vitro is to promote procollagen secretion and not procollagen synthesis. L-ascorbate-phosphate is not an adequate substitute for L-ascorbate in this cell line. © 1995 Wiley-Liss, Inc.  相似文献   

10.
We have investigated the regulation of fibronectin and procollagen synthesis in normal and Rous sarcoma virus transformed primary avian tendon cells. These two proteins interact at the cell periphery and both are reportedly lost upon transformation. We thus examined whether their synthesis was coordinately regulated in Rous sarcoma virus-infected cells. It was found that while the synthesis of both pro alpha 1 and pro alpha 2 peptides was reduced upon transformation, the synthesis of fibronectin was not altered. Nevertheless, long term radiolabeling demonstrated that fibronectin levels were reduced in transformed cells. It is concluded that the reduction in levels of these components at the surface is brought about by different mechanisms; collagen levels being regulated by procollagen synthesis and fibronectin levels by degradation and/or release into the culture medium. The possibility is discussed that fibronectin is lost from the cell periphery of primary avian tendon cells as a consequence of decreased levels of anchoring collagen molecules.  相似文献   

11.
This is a study of the processing of procollagen to collagen in cultures of skin and tendon fibroblasts. Processing was markedly increased by growing cells for 2-4 days postconfluence and then adding ascorbate to the medium for 2 days prior to labeling with [3H] proline. With this system, more than two-thirds of the pro-alpha chains of type I procollagen in the culture medium, and more than 90% of those in the cell layer, were rapidly processed to pC-alpha, pN-alpha, or alpha chains. Purified, exogenous procollagen was also rapidly processed in cell-free culture medium. The results showed for the first time that exogenous procollagen can be processed in conditioned cell-free medium. The system was then used to compare the processing of procollagen in the medium of normal fibroblasts, cells from one bovine and four human variants of osteogenesis imperfecta, and those from eight human variants of the Ehlers-Danlos syndrome. The cells could be divided into three groups, based on their ability to process type I procollagen: normal, consistently slow, and very slow. The cause of the decreased processing was shown to be associated with either a mutation causing a shortening of an alpha chain or decreased activity of procollagen N-proteinase in cell-free culture medium. Decreased processing of procollagen to collagen occurred with cultured fibroblasts from patients with different forms of both osteogenesis imperfecta and Ehlers-Danlos syndrome. Both of these disease syndromes are associated with abnormalities in the structure or metabolism of procollagen in fibrous connective tissues, bones, and teeth. The results show that defects in the structure, synthesis, or processing of procollagen are readily demonstrated with cultured fibroblasts.  相似文献   

12.
The effects of ascorbic acid on collagen biosynthesis were studied in primary cultures of fibroblasts from chick embryo tendons. Addition of ascorbate to the cultures increased the rate of synthesis of procollagen hydroxyproline, but the effect was not explained by activation of prolyl hydroxylase as has been seen in other cell cultures. Instead the increase in the rate of hydroxyproline synthesis appeared to be the result of some direct cofactor effect of the vitamin. In the presence of ascorbate, most of the newly synthesized procollagen was hydroxylated and became triple helical. In the absence of ascorbate, the overall degree of hydroxylation in newly synthesized procollagen was reduced, but a small fraction of newly synthesized procollagen was near-maximally hydroxylated and became triple helical. When cultures were exposed to ascorbic acid for more than 6 h, there was an increase in rate of protein synthesis, rate of procollagen synthesis, and fraction of membrane-bound ribosomes. The increases in these parameters in the presence of ascorbate appeared to be a secondary effect produced by the accumulation of stable triple-helical procollagen in the culture system.  相似文献   

13.
An improved procedure was developed to extract prolyl hydroxylase from tendon cells of chick embryos with detergent, and improved assays were developed for both the activity of the enzyme and the amount of enzyme protein. Freshly isolated tendon cells were found to contain approx. 100 mug of enzyme protein per 10(8) cells and 40-50% of the enzyme protein was active. When the cells were cultured, they were found to contain the same amount of enzyme protein but only 15-20% of the enzyme protein was active. Gel filtration of cell extracts indicated that the active form of prolyl hydroxylase in freshly isolated tendon cells and incultured tendon cells had the same apparent size and the same activity per mug of immunoreactive protein as enzyme which was shown to be a tetramer. The inactive form was found to have about the same apparent size as subunits of the enzyme. When freshly isolated cells were incubated for 2 h in the presence of 40 mug per ml of ascorbate, there was a slight increase in the rate of hydroxyproline synthesis. In cultured cells, ascorbate at a concentration of 40 mug per ml caused a 2-fold increase in the rate of hydroxyproline synthesis within 30 min. However, ascorbate did not icrease the activity of prolyl hydroxylase in extracts from either cell system. Therefore it appears that the influence of ascorbate on synthesis of procollagen hydroxyproline by the cells studied here must be ascribed to a cofactor effect on the hydroxylation reaction similar to that observed with purified enzyme, and it does not involve "activation" of inactive enzyme protein to active enzyme as has been observed in cultures of L-929 and 3T6 mouse fibroblasts.  相似文献   

14.
An improved procedure was developed to extract prolyl hydroxylase from tendon cells of chick embryos with detergent, and improved assays were developed for both the activity of the enzyme and the amount of enzyme protein. Freshly isolated tendon cells were found to contain approx. 100 μg of enzyme protein per 108 cells and 40–50% of the enzyme protein was active. When the cells were cultured, they were found to contain the same amount of enzyme protein by only 15–20% of the enzyme protein was active. Gel filtration of cell extracts indicated that the active form of prolyl hydroxylase in freshly isolated tendon cells and in cultured tendon cells had the same apparent size and the same activity per μg of immunoreactive protein as enzyme which was shown to be a tetramer. The inactive form was found to have about the same apparent size as subunits of the enzyme.When freshly isolated cells were incubated for 2 h in the presence of 40 μg per ml of ascorbate, there was a slight increase in the rate of hydroxyproline synthesis. In cultured cells, ascorbate at a concentration of 40 μg per ml caused a 2-fold increase in the rate of hydroxyproline synthesis within 30 min. However, ascorbate did not increase the activity of prolyl hydroxylase in extracts from either cell system. Therefore it appears that the influence of ascorbate on synthesis of procollagen hydroxyproline by the cells studied here must be ascribed to a cofactor effect on the hydroxylation reaction similar to that observed with purified enzyme, and it does not involve “activation” of inactive enzyme protein to active enzyme as has been observed in cultures of L-929 and 3T6 mouse fibroblasts.  相似文献   

15.
Fibroblasts isolated by enzymic digestion of chick embryo tendons have previously been used to examine the kinetics for the secretion of procollagen (Kao, W. W.-Y., Berg, R. A., and Prockop, D. J. (1977) J. Biol. Chem. 252, 8391-8397). The results indicated that the kinetics approximated the sum of two first order processes with half-times of 14 and 115 min. Here, the same fibroblasts were incubated in the presence of 1.53 mM cis-4-hydroxyproline, an analogue of proline, or in the presence of 0.3 mM alpha,alpha'-dipyridyl, an inhibitor of prolyl hydroxylase, so that the cells synthesized procollagen which could not assume a triple helical conformation characteristic of procollagen. Measurements of the secretion of nonhelical procollagen indicated that the kinetics for secretion differed from the kinetics for the secretion of procollagen and approximated a single first order process with a half-time of approximately 130 min. The nonhelical procollagen synthesized and secreted in the presence of either cis-4-hydroxyproline or alpha,alpha'-dipyridyl consisted of disulfide-bonded pro gamma chains of type I procollagen. The results suggested that the intracellular nonhelical procollagen was present in a single metabolic pool and secretion from this pool occurred with a different rate-limiting step than for helical procollagen. Further results indicated that nonhelical procollagen had a high affinity for prolyl hydroxylase and the affinity for the enzyme was greatly reduced if the procollagen was allowed to assume the triple helical conformation characteristic of normal procollagen. The results are consistent with the hypothesis that the secretion of procollagen is influenced by its conformation-dependent interaction with prolyl hydroxylase or other post-translational enzymes.  相似文献   

16.
Fragments of the amino-terminal propeptide of procollagen have been shown to inhibit the synthesis of procollagen in cultured cells and in a reticulocyte lysate cell-free system (for review see Timpl, R. and Glanville, R.W. (1981) Clin. Orth. Rel. Res. 158, 224-242). In this report, we show that the full-length amino-terminal propeptide of chick pro alpha1(I) chains inhibits the translation of chick tendon mRNA and rat brain mRNA in a reticulocyte lysate cell-free system. The synthesis of procollagen and non-collagenous proteins was equally affected. Inhibition was dose-dependent up to 10 microM. A similar pattern of inhibition was observed for the collagenase-resistant fragment, col 1(I).  相似文献   

17.
Collagen synthesis and procollagen mRNA levels were determined and compared in (1) sparse, rapidly proliferating smooth muscle cells (SMC); (2) postconfluent, density-arrested SMC; and (3) sparse, nonproliferating (mitogen-deprived) rabbit arterial SMC. Collagen synthesis per SMC was decreased by 70% in postconfluent versus proliferating cells. However, relative collagen synthesis, expressed as the percentage of total protein synthesis, increased from 3.7% in sparse cultures to approximately 7% in postconfluent cultures. Slot blot analyses demonstrated that the relative steady state alpha 1(I) and alpha 1(III) procollagen mRNA levels were also increased in postconfluent cultures when compared to sparse cultures. As with collagen synthesis per cell, the mRNA levels per cell for types I and III procollagen in postconfluent cells, determined by densitometry of blots, were likewise approximately half that found in sparse, proliferating cells. In a separate study to determine if cell-cell contact was necessary for eliciting these changes in collagen synthesis, we determined collagen synthesis in mitogen-deprived and proliferating SMC cultures at low density. Mitogen-deprived cultures synthesized only 10% the amount of collagen produced (per cell) by proliferating cultures in 10% fetal bovine serum. Relative collagen synthesis in proliferating and nonproliferating cultures was 5.0 and 8.3%, respectively. These results demonstrate elevated collagen synthesis, per cell, by proliferating cultures compared with nonproliferating cultures, regardless of whether cells were rendered quiescent by density arrest or by mitogen deprivation. Results also suggest a pretranslational mechanism for the regulation of collagen synthesis in rabbit aortic smooth muscle cells.  相似文献   

18.
Glucocorticoids decrease the synthesis of type I procollagen mRNAs   总被引:2,自引:0,他引:2  
Glucocorticoids selectively decrease procollagen synthesis in animal and human skin fibroblasts. beta-Actin content and beta-actin mRNA are not affected by glucocorticoid treatment of chick skin fibroblasts. The inhibitory effect of glucocorticoids on procollagen synthesis is associated with a decrease in total cellular type I procollagen mRNAs in chick skin fibroblasts. These effects of dexamethasone are receptor mediated as determined by pretreatment with the glucocorticoid antagonists progesterone and RU-486 and with the agonist beta-dihydrocortisol. Dexamethasone has a small but significant inhibitory effect on cell growth of chick skin fibroblasts. The ability of this corticosteroid to decrease the steady-state levels of type I procollagen mRNAs in nuclei, cytoplasm, and polysomes varies. The largest decrease of type I procollagen mRNAs is observed in the nuclear and cytoplasmic subcellular fractions 24 h after dexamethasone treatment. Type I procollagen hnRNAs are also decreased as determined by Northern blot analysis of total nuclear RNA. The synthesis of total cellular type I procollagen mRNAs is reversibly decreased by dexamethasone treatment. In addition the synthesis of total nuclear type I procollagen mRNA sequences is decreased at 2, 4, and 24 h following the addition of radioactive nucleoside and dexamethasone to cell cultures. Although the synthesis of pro alpha 1(I) and pro alpha 2(I) mRNAs is decreased in dexamethasone-treated chick skin fibroblasts, the degradation of the total cellular procollagen mRNAs is not altered while the degradation of total cellular RNA is stabilized. These data indicate that the dexamethasone-mediated decrease of procollagen synthesis in embryonic chick skin fibroblasts results from the regulation of procollagen gene expression.  相似文献   

19.
Cultured human articular and costal chondrocytes were used as a model system to examine the effects of recombinant gamma-interferon (IFN-gamma) on synthesis of procollagens, the steady state levels of types I and II procollagen mRNAs, and the expression of major histocompatibility complex class II (Ia-like) antigens on the cell surface. Adult articular chondrocytes synthesized mainly type II collagen during weeks 1-3 of primary culture, whereas types I and III collagens were also produced after longer incubation and predominated after the first subculture. Juvenile costal chondrocytes synthesized no detectable alpha 2(I) collagen chains until after week 1 of primary culture; type II collagen was the predominant species even after weeks of culture. The relative amounts of types I and II collagens synthesized were reflected in the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. In articular chondrocytes, the levels of alpha 1(I) procollagen mRNA were disproportionately low (alpha 1(I)/alpha 2(I) less than 1.0) compared with costal chondrocytes (alpha 1 (I)/alpha 2(I) approximately 2). Recombinant IFN-gamma (0.1-100 units/ml) inhibited synthesis of type II as well as types I and III collagens associated with suppression of the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. IFN-gamma suppressed the levels of alpha 1(I) and alpha 1(II) procollagen mRNAs to a greater extent than alpha 2(I) procollagen mRNA in articular but not in costal chondrocytes. Human leukocyte interferon (IFN-alpha) at 1000 units/ml suppressed collagen synthesis and procollagen mRNA levels to a similar extent as IFN-gamma at 1.0 unit/ml. In addition, IFN-gamma but not IFN-alpha induced the expression of HLA-DR antigens on intact cells. The lymphokine IFN-gamma could, therefore, have a role in suppressing cartilage matrix synthesis in vivo under conditions in which the chondrocytes are in proximity to T lymphocytes and their products.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号