首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
The mechanisms of synthesis and intracellular routing of the various cartilage matrix macromolecules are still unclear. We have studied this problem in cultured chondroblasts at the ultrastructural level using monospecific antibodies against the core protein of the keratan sulfate/chondroitin sulfate-rich cartilage proteoglycan (KS:CS-PG) or Type II procollagen, and cuprolinic blue, a cationic dye that binds to the glycosaminoglycan chains of proteoglycans. Intracellularly, the proteoglycan antibodies localized KS:CS-PG and its precursors primarily in the Golgi complex and secretory vesicles. In contrast, the bulk of Type II procollagen was found within the rough endoplasmic reticulum (ER). While devoid of collagen, the extracellular matrix was rich in KS:CS-PG molecules some of which studded the chondroblast plasmalemma. Cuprolinic blue staining indicated that the proteoglycans present in the Golgi complex fell into a predominant class of large proteoglycans, probably representing KS:CS-PG, and a minor class of smaller proteoglycans. Groups of these divergent proteoglycans often occupied distinct Golgi subcompartments; moreover, single large proteoglycans appeared to align along the luminal surface of Golgi cisternae and secretory vesicles. These results suggest that in cultured chondroblasts KS:CS-PG and Type II procollagen are differentially distributed both in organelles and in the extracellular matrix, and that different proteoglycan types may occupy distinct subcompartments in trans Golgi.  相似文献   

2.
Summary The mechanisms of synthesis and intracellular routing of the various cartilage matrix macromolecules are still unclear. We have studied this problem in cultured chondroblasts at the ultrastructural level using (i) monospecific antibodies against the core protein of the keratan sulfate/chondroitin sulfate-rich cartilage proteoglycan (KS:CS-PG) or Type II procollagen, and (ii) cuprolinic blue, a cationic dye that binds to the glycosaminoglycan chains of proteoglycans. Intracellularly, the proteoglycan antibodies localized KS:CS-PG and its precursors primarily in the Golgi complex and secretory vesicles. In contrast, the bulk of Type II procollagen was found within the rough endoplasmic reticulum (ER). While devoid of collagen, the extracellular matrix was rich in KS:CS-PG molecules some of which studded the chondroblast plasmalemma. Cuprolinic blue staining indicated that the proteoglycans present in the Golgi complex fell into a predominant class of large proteoglycans, probably representing KS:CS-PG, and a minor class of smaller proteoglycans. Groups of these divergent proteoglycans often occupied distinct Golgi subcompartments; moreover, single large proteoglycans appeared to align along the luminal surface of Golgi cisternae and secretory vesicles. These results suggest that in cultured chondroblasts KS:CS-PG and Type II procollagen are differentially distributed both in organelles and in the extracellular matrix, and that different proteoglycan types may occupy distinct subcompartments in trans Golgi.  相似文献   

3.
The cellular and molecular mechanisms regulating the reversible accumulation of nonhelical, underhydroxylated procollagen in the rough endoplasmic reticulum (RER) remain obscure. To clarify these mechanisms, we isolated chondrocytes from chick vertebral cartilage and kept them in scorbutic monolayer cultures. By Day 9 of culture, the chondrocytes had accumulated a large amount of underhydroxylated Type II procollagen in their RER. Within 1 h of ascorbate treatment, the accumulated procollagen was hydroxylated; this was accompanied by a slight stimulation of procollagen secretion and was followed by a marked stimulation starting between 2 and 3 h of treatment. Secretion of the accumulated procollagen was completed by about 24 h of treatment. Strikingly, the marked stimulation of procollagen secretion at 2-3 h of treatment was associated with marked remodeling of the RER. This organelle came to consist of a few, unusually large cisternae ("sacs") and many flat cisternae while the RER in untreated cells consisted of uniform, oval cisternae. The RER remodeling was accompanied by a comparable redistribution of the accumulated Type II procollagen stored in it. The RER sacs and flat cisternae invariably communicated directly and were still detectable by 8 h but not by 24 h of treatment. RER remodeling and procollagen redistribution also occurred in untreated chondrocytes that had been shifted to 23 degrees C for 2-3 h. Together, the data indicate that folding of the accumulated procollagen molecules into their normal helical configuration is followed by procollagen redistribution within, and remodeling of, the RER. These processes may have a role in stimulating procollagen export from the RER and secretion.  相似文献   

4.
5.
Matrix-free cells were prepared from sternal cartilages of 17-day-old chick embryos, and procollagen synthesized and secreted by the cells was isolated by ion exchange chromatography on carboxymethyl cellulose and by gel filtration. The isolated protein was homogeneous by polyacrylamide gel electrophoresis in sodium dodecyl sulfate and it appeared to consist of identical pro-α chains linked by interchain disulfide bonds. Amino acid analysis and cyanogen bromide peptide mapping of the purified procollagen demonstrated that it had structures similar to Type II collagen. The amino acid composition was also consistent with the conclusion that the peptide extensions on the pro-α chains of procollagen contained amino acid sequences not found in the collagen portion of the molecule. Segment-long-spacing aggregates were prepared from the procollagen, and aggregates demonstrated the same banding pattern as is found in segment-long-spacing aggregates prepared from Type II collagen. The segment-long-spacing aggregates from procollagen revealed, however, the presence of NH2-terminal extensions of about 150 Å in length. In addition, the procollagen molecules contained irregularly shaped, large extension peptides at the COOH-terminal end of the molecule.  相似文献   

6.
We have analyzed the distribution of type II collagen N- and C-propeptides in the cell layers and culture medium of bovine articular chondrocyte pellet cultures. Two splice variants of the type II collagen N-propeptide were detected by immunoblotting and immunoassay, using a new anti-peptide antibody, while the C-propeptide was detected using a monoclonal antibody. Type II collagen molecules containing the N-propeptide were detected weakly in cell layers, but not in tissue culture medium of chondrocyte pellet cultures, and both splice variants were observed. Free N-propeptide could not be detected in cell layers or medium. Type II procollagen molecules containing the C-propeptide were detected strongly in cell layers, but not in tissue culture medium, while the free C-propeptide was detected in both cell layers and medium. Since the N- and C-propeptides must be synthesized in a 1:1 molar ratio, we conclude that the N-propeptide is metabolized more quickly than the C-propeptide in this system. Our model can be used to study regulation of procollagen synthesis and propeptidase activity.  相似文献   

7.
Type I procollagen secreted by matrix-free chick embryo tendon cells was labeled with L-[3,3'-3H] cystine and purified by DEAE-cellulose chromatography. After bacterial collagenase digestion, the NH2- and COOH-terminal propeptides were partially characterized by ion exchange chromatography and gel filtration. Similar experiments were then conducted after labeling with either D-[6-3H] glucosamine, D-[2-3H] mannose, or D-[U-14C] glucose. On the basis of these studies and subsequent carbohydrate analysis, it was concluded that the COOH-terminal peptide contained greater than 90% of the radioactive carbohydrate which consisted predominantly of glucosamine and mannose with traces of galactosamine and galactose. Only radioactive glucosamine could be detected in the NH2-terminal propeptide. Under conditions which inhibit hydroxylation of lysine and glycosylation of hydroxylysine, unhydroxylated procollagen (protocollagen) could still be labeled with [3H] glucosamine and [3H] mannose. This suggested that glycosylation of the propeptides is at least initiated at the level of the rough endoplasmic reticulum.  相似文献   

8.
Type II collagen is the major collagenous component of the cartilage extracellular matrix; formation of a covalently cross-linked type II collagen network provides cartilage with important tensile properties. The Col2a1 gene is encoded by 54 exons, of which exon 2 is subject to alternative splicing, resulting in different isoforms named IIA, IIB, IIC and IID. The two major procollagen protein isoforms are type IIA and type IIB procollagen. Type IIA procollagen mRNA contains exon 2 and is generated predominantly by chondroprogenitor cells and other non-cartilaginous tissues. Differentiated chondrocytes generate type IIB procollagen, devoid of exon 2. Although type IIA procollagen is produced in certain non-collagenous tissues during development, this developmentally-regulated alternative splicing switch to type IIB procollagen is restricted to cartilage cells. Though a much studied and characterized molecule, the importance of the various type II collagen protein isoforms in cartilage development and homeostasis is still not completely understood. Effective antibodies against specific epitopes of these isoforms can be useful tools to decipher function. However, most type II collagen antibodies to date recognize either all isoforms or the IIA procollagen isoform. To specifically identify the murine type IIB procollagen, we have generated a rabbit antibody (termed IIBN) directed to a peptide sequence that spans the murine exon 1–3 peptide junction. Characterization of the affinity-purified antibody by western blotting of collagens extracted from wild type murine cartilage or cartilage from Col2a1+ ex2 knock-in mice (which generates predominantly the type IIA procollagen isoform) demonstrated that the IIBN antibody is specific to the type IIB procollagen isoform. IIBN antibody was also able to detect the native type IIB procollagen in the hypertrophic chondrocytes of the wild type growth plate, but not in those of the Col2a1+ ex2 homozygous knock-in mice, by both immunofluorescence and immunohistochemical studies. Thus the IIBN antibody will permit an in-depth characterization of the distribution of IIB procollagen isoform in mouse skeletal tissues. In addition, this antibody will be an important reagent for characterizing mutant type II collagen phenotypes and for monitoring type II procollagen processing and trafficking.  相似文献   

9.
Previous biochemical studies on cartilage tissue from a proband with Type II achondrogenesis-hypochondrogenesis (Godfrey, M., and Hollister, D. W. (1988) Am. J. Hum. Genet. 43, 904-913) indicated heterozygosity for a structural abnormality in the triple helical domain of pro-alpha 1 (II) collagen. Here we demonstrate that the mutation in the type II procollagen gene is a single base change that converts the codon for glycine (GGC) at amino acid 943 of the alpha 1 (II) chain to a codon for serine (AGC). The substitution disrupts the invariant Gly-X-Y structural motif necessary for perfect triple helix formation and leads to extensive overmodification, intracellular retention, and reduced secretion of type II collagen. These findings confirm the proposal that new dominant mutations in the type II procollagen gene may account for some cases of Type II achondrogenesis-hypochondrogenesis. Since recent studies (Lee, B., Vissing, H., Ramirez, F., Rogers, D., and Rimoin, D. (1989) Science 244, 978-980) have identified a dominantly inherited type II procollagen gene deletion in a non-lethal form of skeletal dysplasia, namely spondyloepiphyseal dysplasia, the data more generally demonstrate that different type II procollagen gene mutations eventuate in a wide and diverse spectrum of clinical phenotypes.  相似文献   

10.
11.
12.
Type I/II procollagen N-proteinase was partially purified from chick embryos and used to examine the rate of cleavage of a series of purified type I procollagens synthesized by fibroblasts from probands with heritable disorders of connective tissue. The rate of cleavage was normal with procollagen from a proband with osteogenesis imperfecta that was overmodified by posttranslational enzymes. Therefore, posttranslational overmodification of the protein does not in itself alter the rate of cleavage under the conditions of the assay employed. Cleavage of the procollagen, however, was altered in several procollagens with known mutations in primary structure. Two of the procollagens had in-frame deletions of 18 amino acids encoded by exons 11 and 33 of the pro alpha 2(I) gene. In both procollagens, both the pro alpha 1(I) and the pro alpha 2(I) chains were totally resistant to cleavage. With a procollagen in which glycine-907 of the alpha 2(I) chain domain was substituted with aspartate, both pro alpha chains were cleaved but at a markedly decreased rate. The results, therefore, establish that mutations that alter the primary structure of the pro alpha chains of procollagen at sites far removed from the N-proteinase cleavage site can make the protein resistant to cleavage by the enzyme. The long-range effects of in-frame deletions or other changes in amino acid sequence are probably explained by their disruption of the hairpin structure that is formed by each of the three pro alpha chains in the region containing the cleavage site and that is essential for cleavage of the procollagen molecule by N-proteinase.  相似文献   

13.
Digestion of cartilage procollagen, pro-α1(II), with bacterial collagenase followed by fractionation of Sephadex G-150 yielded a large glycopeptide (molecular weight 13,200) which could not be demonstrated in a similarly prepared digest of α1(II) chain. Isotopic studies suggested that this glycopeptide contained, in addition to glucose and galactose, mannose, a sugar that is not found in the authentic α-chain of cartilage. The results imply that in pro-α1(II) there is a glycopeptide region differing from the α1(II) chain in amino acid composition and also in the type of carbohydrates attached.  相似文献   

14.
The Disproportionate micromelia (Dmm) mouse has a three nucleotide deletion in Col2a1 in the region encoding the C-propeptide which results in the substitution of one amino acid, Asn, for two amino acids, Lys-Thr. Western blot and immunohistochemical analyses failed to detect type II collagen in the cartilage matrix of the homozygous mice and showed reduced levels in the matrix of heterozygous mice. Type II collagen chains localized intracellularly within the chondrocytes of homozygote and heterozygote tissues. These findings provide evidence that the expression of type II procollagen chains containing the defective C-propeptide results in an intracellular retention and faulty secretion of type II procollagen molecules. A complete absence of mature type II collagen from the homozygote cartilage and an insufficiency of type II collagen in the heterozygote cartilage explains the Dmm mouse phenotype. The integrity of the C-propeptide is thus crucial for the biosynthesis of normal type II collagen by chondrocytes.  相似文献   

15.
Type II procollagen is expressed as two splice forms. One form, type IIB, is synthesized by chondrocytes and is the major extracellular matrix component of cartilage. The other form, type IIA, contains an additional 69 amino acid cysteine-rich domain in the NH2-propeptide and is synthesized by chondrogenic mesenchyme and perichondrium. We have hypothesized that the additional protein domain of type IIA procollagen plays a role in chondrogenesis. The present study was designed to determine the localization of the type IIA NH2-propeptide and its function during chondrogenesis. Immunofluorescence histochemistry using antibodies to three domains of the type IIA procollagen molecule was used to localize the NH2-propeptide, fibrillar domain, and COOH-propeptides of the type IIA procollagen molecule during chondrogenesis in a developing human long bone (stage XXI). Before chondrogenesis, type IIA procollagen was synthesized by chondroprogenitor cells and deposited in the extracellular matrix. Immunoelectron microscopy revealed type IIA procollagen fibrils labeled with antibodies to NH2-propeptide at approximately 70 nm interval suggesting that the NH2-propeptide remains attached to the collagen molecule in the extracellular matrix. As differentiation proceeds, the cells switch synthesis from type IIA to IIB procollagen, and the newly synthesized type IIB collagen displaces the type IIA procollagen into the interterritorial matrix. To initiate studies on the function of type IIA procollagen, binding was tested between recombinant NH2-propeptide and various growth factors known to be involved in chondrogenesis. A solid phase binding assay showed no reaction with bFGF or IGF-1, however, binding was observed with TGF-beta1 and BMP-2, both known to induce endochondral bone formation. BMP-2, but not IGF-1, coimmunoprecipitated with type IIA NH2-propeptide. Recombinant type IIA NH2-propeptide and type IIA procollagen from media coimmunoprecipitated with BMP-2 while recombinant type IIB NH2-propeptide and all other forms of type II procollagens and mature collagen did not react with BMP-2. Taken together, these results suggest that the NH2-propeptide of type IIA procollagen could function in the extracellular matrix distribution of bone morphogenetic proteins in chondrogenic tissue.  相似文献   

16.
Inhibitory effects of tunicamycin on procollagen biosynthesis and secretion   总被引:2,自引:0,他引:2  
Chick embryo cells were briefly exposed to the antibiotic, tunicamycin. Pre-exposed cells, compared to control cultures, showed a severe, progressive inhibition of the incorporation of glucosamine and mannose into total cellular macromolecules. Inhibition of the incorporation of glycine, leucine and proline was also progressive but not as marked as for the carbohydrates. Cellular secretion of all macromolecules was severely impaired. while comparison of the procollagens showed no difference in their subunit size or in their degree of glycosylation; the intracellular content of procollagen polypeptides was similar for both types of cells. In vitro studies showed that tunicamycin selectively inhibited glucosamine, but not mannose, incorporation into macromolecules. The composite results indicate that tunicamycin effectively inhibits protein synthesis, protein glycosylation and protein secretion in chick embryo cells.  相似文献   

17.
Chick embryo cells were briefly exposed to the antibiotic, tunicamycin. Pre-exposed cells, compared to control cultures, showed a severe, progressive inhibition of the incorporation of glucosamine and mannose into total cellular macromolecules. Inhibition of the incorporation of glycine, leucine and proline was also progressive but not as marked as for the carbohydrates. Cellular secretion of all macromolecules was severely impaired, while comparison of the procollagens showed no difference in their subunit size or in their degree of glycosylation; the intracellular content of procollagen polypeptides was similar for both types of cells. In vitro studies showed that tunicamycin selectively inhibited glucosamine, but not mannose, incorporation into macromolecules. The composite results indicate that tunicamycin effectively inhibits protein synthesis, protein glycosylation and protein secretion in chick embryo cells.  相似文献   

18.
By immunofluorescence analyses, we have determined that Type III procollagen, Type III collagen, and B and C chains of basement membrane collagen are associated with preimplantation mouse embryos. Type III collagen and procollagen appear to be associated with embryos at the 4-cell stage and beyond, whereas antibodies to B and C collagen chains bind to 2-cell and later embryos. All of these collagen types are detected in increasing amounts as embryos develop in a defined medium, indicating that the embryo is capable of their synthesis. By the blastocyst stage, the collagens are primarily localized intercellularly. Cells of the inner cell mass (ICM) also bind collagen antibodies. When isolated ICMs become two-layered, both the inner presumptive ectoderm layer and the outer primitive endoderm layer react with antibodies to Type III collagen and procollagen. The endoderm cells also react avidly with antibodies to B- and C-chain collagens. Preimplantation embryos and ICMs fail to react with antibodies to Types I and II collagen. During peri-implantation stages, blastocysts continue to react with antibodies to Type III and basement membrane collagens. There is no obvious relationship between the intensity of immunofluorescence and the change in the blastocyst surface from nonadhesive to adhesive. Furthermore, blastocysts prevented from undergoing implantation-related events in utero and in vitro react extensively with collagen antibodies. Blastocyst surface collagens might, nevertheless, play a role in implantation by undergoing organizational changes.  相似文献   

19.
Chondrocytes from the presumptive calcification region of 20 day old embryonic chick sternum were found to synthesize a 70 Kd Type X procollagen precursor in addition to the previously described 59 Kd Type X collagen molecules. The 70 Kd molecules exhibited an additional cyanogen bromide peptide, contained a disulfide-bonded domain, and were converted into the 59 Kd moieties during pulse-chase experiments. The conversion of the 70 Kd to the 59 Kd Type X collagen was prevented upon microtubular transport inhibition with colchicine and resulted in tissue accumulation of the 70 Kd Type X procollagen.  相似文献   

20.
The processing of type III and type I procollagen molecules in cultured bovine aortic smooth muscle cells was investigated. The molecular identities of the processing intermediates of type III and type I procollagen were characterized by analysis of the radioactive collagenous components using mammalian collagenase and pepsin digestions and cyanogen bromide peptide mapping. The results indicate that the processed intermediates for procollagen type III and type I are their respective pC components. Although the processing pathways for both collagen types are the same, data from pulse-chase experiments suggest that the rates at which the processing occurs are different. Type I procollagen is processed more rapidly to its intermediate than is type III procollagen. The type I pC intermediate is almost completely processed to alpha-chains and a significant portion of these fully processed molecules remains in a soluble form even after 11 h. In the same time period, the type III pC intermediate is slowly converted to alpha-chains. Since beta-aminopropionitrile was not employed in these studies, significant accumulation of collagen chains into the insoluble extracellular matrix was observed during the chase period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号