首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
Melanin is a widespread pigment causing variation in skin darkness, with darker phenotypes typically reaching higher equilibrium temperatures than lighter ones. Therefore, selection is expected to favour darker phenotypes in colder environments. In the present study, we show intraspecific variation in pupal (and wing) melanization along an altitudinal gradient in two species of copper butterflies. Both, pupal and wing melanization increased with increasing altitude. Consistent with the thermal melanism hypothesis, darker (high-altitude) pupae reached higher equilibrium temperatures than paler (low-altitude) ones. However, as temperature differences were rather small despite pronounced differences in melanization, we cannot rule out that factors (e.g. ultraviolet protection, disease resistance) other than temperature comprise the principal selective agents. Mechanistically, variation in melanization might be related to variation in hormone titres, as demonstrated by low-altitude pupae showing higher ecdysteroid and juvenile hormone titres compared to high-altitude ones. Furthermore, we report sex differences in wing melanization, with males being darker than females, which is potentially related to a higher flight activity of males.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 301–312.  相似文献   

2.
3.
4.
Thermal stress is a pervasive selective agent in natural populations that impacts organismal growth, survival, and reproduction. Drosophila melanogaster exhibits a variety of putatively adaptive phenotypic responses to thermal stress in natural and experimental settings; however, accompanying assessments of fitness are typically lacking. Here, we quantify changes in fitness and known thermal tolerance traits in replicated experimental D. melanogaster populations following more than 40 generations of evolution to either cyclic cold or hot temperatures. By evaluating fitness for both evolved populations alongside a reconstituted starting population, we show that the evolved populations were the best adapted within their respective thermal environments. More strikingly, the evolved populations exhibited increased fitness in both environments and improved resistance to both acute heat and cold stress. This unexpected parallel response appeared to be an adaptation to the rapid temperature changes that drove the cycling thermal regimes, as parallel fitness changes were not observed when tested in a constant thermal environment. Our results add to a small, but growing group of studies that demonstrate the importance of fluctuating temperature changes for thermal adaptation and highlight the need for additional work in this area.  相似文献   

5.
6.
Phenotypic plasticity may allow species to cope with environmental variation. The study of thermal plasticity and its evolution helps understanding how populations respond to variation in temperature. In the context of climate change, it is essential to realize the impact of historical differences in the ability of populations to exhibit a plastic response to thermal variation and how it evolves during colonization of new environments. We have analyzed the real‐time evolution of thermal reaction norms of adult and juvenile traits in Drosophila subobscura populations from three locations of Europe in the laboratory. These populations were kept at a constant temperature of 18ºC, and were periodically assayed at three experimental temperatures (13ºC, 18ºC, and 23ºC). We found initial differentiation between populations in thermal plasticity as well as evolutionary convergence in the shape of reaction norms for some adult traits, but not for any of the juvenile traits. Contrary to theoretical expectations, an overall better performance of high latitude populations across temperatures in early generations was observed. Our study shows that the evolution of thermal plasticity is trait specific, and that a new stable environment did not limit the ability of populations to cope with environmental challenges.  相似文献   

7.
Tropical and subtropical species represent the majority of biodiversity. These species are predicted to lack the capacity to evolve higher thermal limits in response to selection imposed by climatic change. However, these assessments have relied on indirect estimates of adaptive capacity, using conditions that do not reflect environmental changes projected under climate change. Using a paternal half‐sib full‐sib breeding design, we estimated the additive genetic variance and narrow‐sense heritability for adult upper thermal limits in two rainforest‐restricted species of Drosophila reared under two thermal regimes, reflecting increases in seasonal temperature projected for the Wet Tropics of Australia and under standard laboratory conditions (constant 25°C). Estimates of additive genetic variation and narrow‐sense heritability for adult heat tolerance were significantly different from zero in both species under projected summer, but not winter or constant, thermal regimes. In contrast, significant broad‐sense genetic variation was apparent in all thermal regimes for egg‐to‐adult viability. Environment‐dependent changes in the expression of genetic variation for adult upper thermal limits suggest that predicting adaptive responses to climate change will be difficult. Estimating adaptive capacity under conditions that do not reflect future environmental conditions may provide limited insight into evolutionary responses to climate change.  相似文献   

8.
Studies of individual variation in the physiological performance of animals and their relationship with metabolism may provide insight into how selection influences diversity in phenotypic traits. Thus, the aims of the present study were to investigate variation in thermal tolerance and its relationship with individual metabolism in juvenile qingbo (Spinibarbus sinensis). To fulfill our goal, we first measured the resting metabolic rate (RMR), maximum metabolic rate (MMR), metabolic scope (MS, MMR–RMR) and excess post-exercise oxygen consumption (EPOC) of 40 fish at 25 °C. We then measured the critical thermal minimum (CTmin), lethal thermal minimum (LTmin), critical thermal maximum (CTmax), and lethal thermal maximum (LTmax) of 20 fish. Both MMR and MS were positively correlated with the metabolic recovery rate (MRR) (p = 0.001), indicating that high aerobic metabolic performance individuals possessed an advantage for the recovery of anaerobic metabolism. However, the negative correlation between EPOC and MRR (p = 0.017) indicated a slow recovery of the metabolism of high anaerobic metabolic capacity individuals. The RMR was positively correlated with CTmin and LTmin, whereas all of the metabolic rate parameters (RMR, MMR, and MS) were negatively correlated with CTmax and LTmax (p < 0.05), indicating that high aerobic metabolic performance individuals have a weakened thermal tolerance. These results suggested that there is a trade-off between aerobic metabolic performance and thermal tolerance.  相似文献   

9.
珠江三角洲城市群热环境空间格局动态   总被引:11,自引:4,他引:11  
江学顶  夏北成 《生态学报》2007,27(4):1461-1470
以广州为中心的珠江三角洲城市群发展十分迅速,区域内热岛强度与规模日益加剧,受研究方法和技术的限制,热岛空间格局及其动态研究不深入。因此,研究城市特别是城市群热环境空间格局的日变化特征具有重要的现实意义和理论意义。采用遥感反演和中尺度模式MM5模拟的结果研究城市热力景观及其日变化规律,其中MM5模拟采用四重嵌套网格,最高分辨率为1km,遥感数据采用ETM+的热红外波段。结果表明该区域热岛具有多中心的特征,两种方法得到的热岛空间分布特征一致,其精度均较高,但遥感反演结果更为细致。两者的空间格局与自相关性较接近,数值模拟结果的空间自相关程度呈近似余弦曲线变化;热力景观格局指数白天波动明显、夜间波动较小,且斑块数和景观形状指数白天大于夜晚,并在5:00出现小波峰;景观水平上的景观指数11:00~14:00出现最大值,夜间较小,其中景观分离度和面积一周长分维数在5:00出现小波峰,21:00出现拐点;下垫面性质、地表热量交换、局地环流等对热力景观格局影响较大。以数值模拟为基础,借助3S技术能较好研究城市热力景观空间格局的日变化特征。  相似文献   

10.
Indian geographical populations of Drosophila melanogaster exhibit significant correlation (r 0.95) of allelic frequencies at Est -6 and Adh loci with latitude as well as altitude. Est -6S and AdhF allozymes are well adapted to colder environments while Est -6F and AdhS are warm adapted. The data on allozymic clines match climatic conditions on the Indian subcontinent. On the basis of multiple regression analysis, one major conclusion is that coefficient of variation of temperature ( T CV) along latitude/altitude accounts for alterations in allelic frequency at the Adh locus while T max and T max explain changes at the Est -6 locus. Thus, climatic conditions lead to thermal selection of allozymes in Indian populations of D. melanogaster .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号