首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文报道以蟹、虾废壳为原料提取壳聚糖,用戊二醛作交联剂,将碱性磷酸酶固定于壳聚糖上。同时探讨了一定量湿壳聚糖载体与交联剂浓度,给酶量及产率等关系的最适固定化酶条件,并对固定化酶的热稳定性、操作稳定性、米氏常数、最适pH、最适温度等理化性质进行了探讨。  相似文献   

2.
蒜氨酸酶的固定化及其酶学性质研究   总被引:2,自引:0,他引:2  
为了提高蒜氨酸酶的稳定性并实现酶的反复利用,研究了影响蒜氨酸酶固定化的因素及固定化蒜氨酸酶的酶学性质。蒜氨酸酶的固定化以壳聚糖微球为载体,戊二醛为交联剂,固定化的最适条件为:戊二醛浓度4%,给酶量20.2U,交联时间2h。固定化蒜氨酸酶的最适pH值7.0,最适温度35℃,米氏常数Km 7.9 mmol/L,操作稳定性比较好,连续使用10次后酶活力损失低于10%。  相似文献   

3.
漆酶在磁性壳聚糖微球上的固定及其酶学性质研究   总被引:5,自引:0,他引:5  
以磁性壳聚糖微球为载体,戊二醛为交联剂,共价结合制备固定化漆酶。探讨了漆酶固定化的影响因素,并对固定化漆酶的性质进行了研究。确定漆酶固定化适宜条件为:50 mg磁性壳聚糖微球,加入10mL 0.8mg/mL 漆酶磷酸盐缓冲液(0.1mol/L,pH 7.0),在4℃固定2h。固定化酶最适pH为3.0, 最适温度分别为10℃和55℃,均比游离酶降低5℃。在pH 3.0,温度37℃时,固定化酶对ABTS的表观米氏常数为171.1μmol/L。与游离酶相比,该固定化漆酶热稳定性明显提高,并具有良好的操作和存储稳定性。  相似文献   

4.
氨基末端磁性载体固定化中性蛋白酶的研究   总被引:3,自引:1,他引:2  
以氨基末端磁微粒为载体,用戊二醛作交联剂,通过共价交联结合法固定化AS1.398中性蛋白酶.可以制备出活力达45 000 U/g磁性固定化酶.探讨了该载体对中性蛋白酶的最适固定化条件,并对磁性固定化酶的热稳定性,储存稳定性、操作稳定性等进行了研究,确定了此载体对酶的固载能力大于200 mg/g(载体),及固定化磁性酶最适pH为7.5, 最适温度为60℃等催化特性.  相似文献   

5.
分别采用海藻酸钠、明胶和壳聚糖为载体,并以戊二醛为交联剂,通过包埋-交联和吸附-交联两种耦合固定化方法制备固定化锰过氧化物酶。探讨了酶的不同固定化条件和固定化酶的部分性能。与游离酶相比,制备的3种固定化酶最适反应pH分别由7.0降低到5.0、5.0和3.0,最适反应温度分别由35℃升高到75℃、55℃和75℃。3种固定化酶的耐热性都显著提高,其中用壳聚糖制成的固定化酶在pH 2.2~11的宽范围内表现出很好的酸碱耐受性。30℃连续测定6~9次酶活力,重复使用的3种固定化酶显示出良好的稳定性。将固定化酶应用在偶氮染料的脱色中,用明胶制成的固定化酶在静置和摇床条件下,以及用海藻酸钠制成的固定化酶在摇床条件下,均表现出与游离酶相近的脱色能力,并且在重复进行的摇床实验中,脱色能力未降低,反应前后的酶活力均没有损失。  相似文献   

6.
分别采用海藻酸钠、明胶和壳聚糖为载体,并以戊二醛为交联剂,通过包埋-交联和吸附-交联两种耦合固定化方法制备固定化锰过氧化物酶。探讨了酶的不同固定化条件和固定化酶的部分性能。与游离酶相比,制备的3种固定化酶最适反应pH分别由7·0降低到5·0、5·0和3·0,最适反应温度分别由35℃升高到75℃、55℃和75℃。3种固定化酶的耐热性都显著提高,其中用壳聚糖制成的固定化酶在pH2·2~11的宽范围内表现出很好的酸碱耐受性。30℃连续测定6~9次酶活力,重复使用的3种固定化酶显示出良好的稳定性。将固定化酶应用在偶氮染料的脱色中,用明胶制成的固定化酶在静置和摇床条件下,以及用海藻酸钠制成的固定化酶在摇床条件下,均表现出与游离酶相近的脱色能力,并且在重复进行的摇床实验中,脱色能力未降低,反应前后的酶活力均没有损失。  相似文献   

7.
壳聚糖固定化脲酶研究Ⅱ   总被引:2,自引:0,他引:2  
从废弃的蟹虾壳中提取壳聚糖,探讨了壳聚糖(载体),戌二醛(交联剂)、脲(保护剂)及给酶量四者之间的最适固定化脲酶条件,并对固定化脲酶的理化性质进行了初步探讨。同时还探讨了引入铜离子保护部分氨基制备的固定化脲酶制成柱式反应器,让底物逆流通过反应柱,考察了相同浓度底物溶液在不同温度下过柱后的转化率。  相似文献   

8.
 以自制的脱乙酰壳多糖作载体,戊二醛为交联剂,对胰蛋白酶的固定化条件及其固定化酶的性质进行了研究。考查了交联剂的用量、pH值、以及载体与酶的比例等因素对胰蛋白酶固定化的影响。在所选择的固定化条件下,固定化酶的活性回收可达50%以上。同时研究了固定化胰蛋白酶的一些性质;最适温度60℃,最适PH8.0,Km值比可溶性酶升高,热稳定性、pH贮存稳定性以及在乙醇水溶液中的稳定性明显高于可溶性胰蛋白酶。在柱式反应器内,以2%酪蛋白为底物对,操作半衰期为40天。  相似文献   

9.
壳聚糖固定化谷胱甘肽硫转移酶的研究   总被引:2,自引:0,他引:2  
尹登科  丁虹  喻昕 《生物技术》2004,14(6):17-19
目的:利用壳聚糖固定日本血吸虫谷胱甘肽硫转移酶,并对固定化酶性质及体外催化活性进行研究。方法:利用大肠杆菌BL21(DE3)表达日本血吸虫谷胱甘肽硫转移酶,并从中粗提谷胱甘肽硫转移酶,将其固定在用戊二醛交联的壳聚糖载体上,对游离酶和固定酶的最适pH、温度,游离酶和固定化酶对底物1-氯-2,4-二硝基苯(CDNB)和谷胱甘肽(GSH)的亲和力,温度的稳定性进行了研究。结果:固定化酶活回收率可达41.6%,最适pH6.5~7.0,最适温度37℃,对底物(CDNB和GSH)的亲和力略有下降,对温度稳定性大大提高。在体外固定化酶有很好的催化解毒作用。  相似文献   

10.
以N-琥珀酰壳聚糖为载体固定中性蛋白酶,研究了固定化酶的适宜温度、pH、热稳定性和酸碱稳定性等酶学性质,同时对固定化酶和游离酶的红外光谱图作了分析比较.结果表明:中性蛋白酶经固定化后,最适酶反应pH由7升至8,最适温度没有改变,仍为50℃,所得固定化酶具有较宽的酸碱稳定性范围,在pH 7~9都保持较高活力,并且同定化酶的热稳定性比游离酶有较大的提高.红外光谱分析表明,酶固定化前后的红外光谱图的部分特征峰有较大的差异.  相似文献   

11.
The liposome-bound cellulase was prepared by covalently coupling cellulase with the enzyme-free liposomes bearing aldehyde groups so that cellulase was located solely on the outer membrane of liposomes. The modified cellulase possessed the higher activity efficiency and lipid-based specific activity than the cellulase-containing liposomes reported previously. The enzyme-free liposomes bearing aldehyde groups were covalently immobilized with the chitosan gel beads and the free cellulase was coupled with the treated gel beads to prepare the immobilized liposome-bound cellulase. The activity efficiency of the immobilized liposome-bound cellulase was much higher than that of the conventionally immobilized cellulase. The results on reusability of the immobilized liposome-bound cellulase in the hydrolysis of either soluble or insoluble cellulose showed that the immobilized liposome-bound cellulase had the higher remaining cellulase activity and reusability than the conventionally immobilized cellulase for the hydrolysis of either type of cellulose. The liposomal membrane was suggested to be efficient in maintaining the cellulase activity during the hydrolysis.  相似文献   

12.
用硅胶作载体,戊二醛作交联剂,制备了固定化的纤维素酶。对制备固定化纤维素酶的偶联剂浓度、pH、给酶量3个影响因素进行了研究,通过正交试验优化得出最佳的固定化条件:交联剂戊二醛浓度为1%,固定化pH值为5,固载量为每克载体100mg纤维素酶。  相似文献   

13.
Cellulase has been immobilized on hybrid concanavalin A (Con A)-layered calcium alginate–starch beads. Immobilized cellulase retained about 82% of its activity. Con A was extracted from jack bean and the obtained crude protein was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The immobilized beads showed high mechanical and storage stability; immobilized cellulase retained 100% and 85% activity at 4°C and 30°C, respectively, over one month. The immobilized cellulase retained about 70% of its activity after five cycles of use. The immobilized cellulase retained 70% activity after 120-min exposure to 60°C, whereas the soluble form only retained about 20%, showing that immobilization improved thermal stability. Surface morphology and elemental analysis of immobilized cellulase were examined using scanning electron microscope equipped with energy-dispersive X-ray. Based on the enzyme stability and reuse, this method of immobilization is both convenient and cheap.  相似文献   

14.
Summary Fluid immobilized cellulase was prepared using polyethyleneglycols and hexamethylene diisocyanate, and its properties studied. The cellulase activity of the immobilized enzymes varied with monomer composition and molecular weight of polyethyleneglycols. The enzyme activity was affected by the viscosity of the carrier. A solid substrate (cellulose powder) can be hydrolyzed with the fluid immobilized enzyme.  相似文献   

15.
Amino acid modified chitosan beads (CBs) for immobilization of lipases from Candida rugosa were prepared by activation of a chitosan backbone with epichlorohydrin followed by amino acid coupling. The beads were analyzed by elemental analysis and solid state NMR with coupling yields of the amino acids ranging from 15 to 60%. The immobilized lipase on unmodified chitosan beads showed the highest immobilization yield (92.7%), but its activity was relatively low (10.4%). However, in spite of low immobilization yields (15–50%), the immobilized lipases on the amino acid modified chitosan beads showed activities higher than that of the unmodified chitosan beads, especially on Ala or Leu modified chitosan beads (Ala-CB or Leu-CB) with 49% activity for Ala-CB and 51% for Leu-CB. The immobilized lipases on Ala-CB improved thermal stability at 55 °C, compared to free and immobilized lipases on unmodified chitosan beads and the immobilized lipase on Ala-CB retained 93% of the initial activity when stored at 4 °C for 4 weeks. In addition, the activity of the immobilized lipase on Ala-CB retained 77% of its high initial activity after 10 times of reuse. The kinetic data (kcat/Km) supports that the immobilized lipase on Ala-CB can give better substrate specificity than the unmodified chitosan beads.  相似文献   

16.
Summary Aspergillus niger cellulase was imobilized on cyanogen bromide activated dextran of varying molecular weights. The effect of different concentrations of cyanogen bromide used for the activation process was also studied. About 50% conjugation and 70% retention activity was achieved in the immobilized cellulase. The pH activity of immobilized enzyme was unchanged, but exhibited more stable activity at acidic pH than the free enzyme. Higher resistance to heat inactivation was also observed.  相似文献   

17.
Chitosanolytic enzymes from Enterobacter sp. G-1 were immobilized on various carriers to continuously hydrolyze chitosan. Four different carriers were tested: FE-3901 (strong basic anion exchange resin, ionic binding), glutaraldehyde-treated FE-4612 (weak basic anion exchange resin, cross-linking), Chitopearl (chitosan beads), and alginate calcium. Glutaraldehyde-treated FE-4612 and Chitopearl immobilized more protein than the others. The enzyme immobilized on FE-3901 had the greatest activity. The activity of enzyme immobilized on FE-3901 decreased rapidly when exposed to a continuous flow of 1% chitosan. The enzyme immobilized with Chitopearl retained more than 50% of its original activity after 17 days, and the activity was fully restored by re-immobilization.  相似文献   

18.
Genipin, a reagent of plant origin was used for the immobilization of lipase by cross-linking to chitosan beads. The catalytic properties and operational and storage stabilities of the immobilized lipase were compared with the soluble lipase. Under optimum conditions, 198 microg protein was bound per g chitosan with a protein-coupling yield of 35%. The hydrolytic activity was 10.8 U/g chitosan and the relative specific activity was 108%. The immobilized lipase showed better thermal and pH stabilities compared to the soluble form. The immobilized enzyme exhibited mass transfer limitations as reflected by a higher apparent K(m) value and a lower energy of activation. The immobilized enzyme retained about 74% of its initial activity after five hydrolytic cycles.  相似文献   

19.
Chitosanolytic enzymes from Enterobacter sp. G-1 were immobilized on various carriers to continuously hydrolyze chitosan. Four different carriers were tested: FE-3901 (strong basic anion exchage resin, ionic binding), glutaraldehyde-treated FE-4612 (weak basic anion exchange resin, cross-linking), Chitopearl (chitosan beads), and alginate calcium. Glutaraldehyde-treated FE-4612 and Chitopearl immobilized more protein than the others. The enzyme immobilized on FE-3901 had the greatest activity. The activity of enzyme immobilized on FE-3901 decreased rapidly when exposed to a continuous flow of 1% chitosan. The enzyme immobilized with Chitopearl retained more than 50% of its original activity after 17 days, and the activity was fully restored by re-immobilization.  相似文献   

20.
《Process Biochemistry》2004,39(9):1087-1091
The stability of acid phosphatase immobilized on composite beads was studied. The beads were prepared from equal weights of cuttlebone chitosan and activated clay and were cross-linked with glutaraldehyde. The immobilized enzyme maintained 90% of its original activity after 50 times of reuse. The immobilized acid phosphatase revealed acceptable thermal and pH stabilities over a broad experimental range. Thermal deactivation of immobilized enzyme was also examined by first-order kinetics and the deactivation energy was determined. The kinetics of a model reaction catalyzed by the immobilized acid phosphatase was finally investigated by the Michaelis–Menten equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号