首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
细胞氧化损伤时8-羟基鸟嘌呤的测定   总被引:3,自引:0,他引:3       下载免费PDF全文
利用H2O2易通过细胞膜而到达核这一特点,初步探讨了不同浓度H2O2对HL-60细胞DNA的氧化损伤程度.发现H2O2浓度在0.4 mmol/L以上时,作用8~24 h可以用气相色谱/火焰离子检测器(GC/FID)检测到氧化损伤标志产物——8-羟基鸟嘌呤(8-oh-G),并观测到在0.4~0.8 mmol/L H2O2作用一定时间时,8-羟基鸟嘌呤含量随H2O2浓度升高而升高.  相似文献   

2.
H2O2-Fe3+所致人淋巴细胞DNA双链断裂损伤   总被引:2,自引:0,他引:2  
采用脉冲电场凝胶电泳法检测H2O2-Fe3+体系产生的OH·对人淋巴细胞DNA的双链断裂损伤.H2O2-Fe3+浓度与DNA双链断裂呈明显量效关系;随OH·作用时间延长,细胞DNA双链断裂加重;过氧化氢酶对OH·损伤有明显抑制作用.脉冲电场凝胶电泳法可检测到的H2O2和FeCl3引起细胞DNA双链断裂的最低浓度为0.3 mmol/L和6 μmol/L.  相似文献   

3.
过氧化氢对培养心肌细胞损伤作用的研究   总被引:13,自引:1,他引:12  
氧化应激时产生大量的自由基,造成心肌细胞的损伤.过氧化氢(H2O2)是有机体氧化代谢产物,同时是一种活性氧.应用不同浓度的H2O2,分别于不同作用时间,动态观察其对心肌细胞的损伤作用.从实验结果看到,低浓度的H2O2(<0.1 mmol/L)作用2 h,使心肌细胞产生早期的生物化学的改变,如MDA产生堆积和细胞周期时相改变(G1期细胞增加,G2期细胞减少),此时心肌酶基本无泄漏,心肌细胞的死亡率很低,HE形态学观察基本无改变;随着H2O2浓度的增加(1~5 mmol/L)和作用时间的延长,进一步诱导细胞损伤加剧,LDH释放和MDA积累明显升高,细胞死亡率也明显增加,已具有统计学意义.同时可观察到其病理形态学的坏死性改变;当10 mmol/L H2O2作用时,细胞大量死亡,形态学可见细胞极度收缩、脱落,形成大面积的细胞脱失区.因此,H2O2作为一种活性氧自由基,依其浓度和作用时间不同可造成不同程度的心肌细胞的损伤.辣根过氧化物酶作为一种自由基清除剂,可明显减少H2O2活性氧自由基对心肌细胞的损伤作用.  相似文献   

4.
Smac/DIABLO在过氧化氢所致C2C12肌原细胞凋亡中的作用   总被引:4,自引:0,他引:4  
为探讨Smac/DIABLO在过氧化氢(H2O2)所致C2C12肌原细胞凋亡中的作用,采用Hoechst 33258染色,观察H2O2 (0.5 mmol/L)处理C2C12肌原细胞不同时间后,细胞核形态学改变并计算凋亡核百分率,DNA抽提及琼脂糖电泳观察凋亡特征性梯状带,利用细胞成分分离后蛋白质印迹分析H2O2是否导致Smac/DIABLO从线粒体释放,采用Caspase检测试剂盒及蛋白质印迹分析Caspase-3和Caspase-9的活化,转染Smac/DIABLO基因,观察Smac/DIABLO过表达对H2O2所致的C2C12肌原细胞凋亡的影响.结果表明:H2O2处理1 h后,Smac/DIABLO从C2C12肌原细胞线粒体释放入胞浆,2 h更明显;H2O2处理4 h后,Caspase-3和Caspase-9活化,12 h达高峰;H2O2处理24 h后,C2C12肌原细胞显示特征性的凋亡形态改变,凋亡核百分率明显升高,DNA电泳出现明显“梯状”条带.与单纯过氧化氢损伤组相比,Smac/DIABLO高表达的C2C12肌原细胞经过氧化氢损伤组的Caspase-3和Caspase-9的活化、凋亡核百分率的升高、“梯状”条带的出现均更明显.结果表明,H2O2可导致Smac/DIABLO从C2C12肌原细胞线粒体释放,促进Caspase-9和Caspase-3的活化而促进细胞凋亡的发生.  相似文献   

5.
研究氧化苦参碱对L6大鼠成肌细胞H<>sub>2O2凋亡的影响.采用过氧化氢损伤L6大鼠成肌细胞的方法,建立L6大鼠成肌细胞H2O2凋亡模型.使用剂量为0.3,0.15,0.75 g/L的氧化苦参碱处理细胞.应用MTT法统计存活率和流式细胞仪检测细胞周期及凋亡率,用DAPI荧光染色、HE染色以及Bax和Bcl-2抗体鉴定损伤程度,Western blot检测蛋白质差异.结果表明,H2O2损伤的成肌细胞存活率降低,凋亡率增加.各种剂量氧化苦参碱能提高成肌细胞的存活率,促使Bcl-2增高,Bax降低.对成肌细胞的保护程度随氧化苦参碱剂量增加而增强,在剂量为0.3 g/L时,效果显著,其次是0.15、0.75 g/L的氧化苦参碱.其生理生化机制是氧化苦参碱保护2O2通过NFκB信号通路造成的大鼠成肌细胞凋亡模型.结果显示,氧化苦参碱具有作为新的抗氧化药物的潜力.  相似文献   

6.
郑鹏  王波  王前 《广西植物》2020,40(9):1349-1356
沙棘(Hippophae rhamnoides)是一种具有药用价值的植物,沙棘果油具有抗氧化、抗炎症及抗肿瘤等多种药理作用。为了探讨沙棘果油对H2O2造成氧化性损伤的细胞生长的影响及其抗氧化性,该研究选择H2O2对RAW264.7细胞氧化损伤模型,通过DPPH(1,1-二苯基-2-三硝基苯肼)自由基清除实验检测沙棘果油体外抗氧化能力,用[3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐]MTT法和流式细胞仪检测超氧化物阴离子荧光探针(DHE)信号,分别检测不同浓度沙棘果油对H2O2损伤细胞的存活率和超氧化物阴离子水平。结果表明:(1)在DPPH自由基清除实验中,当沙棘果油浓度小于4.9%时,沙棘果油的抗氧化能力大于维生素C。(2)通过MTT法发现,浓度为3.125%的沙棘果油对H2O2损伤细胞的存活率显著升高(P<0.01)。(3)从DHE检测发现,在同一检测时间点,随着沙棘果油浓度增加,DHE阳性细胞比例显著下降(P<0.01); 在不同检测时间点,随着沙棘果油浓度增加,DHE阳性细胞比例显著升高(P<0.01)。沙棘果油对过氧化氢诱导的RAW264.7细胞氧化损伤模型有一定修复作用,可能与细胞内超氧化物阴离子水平受到抑制有关,它具有抗氧化性损伤的潜能。  相似文献   

7.
Dps(DNAprotection during starvation)蛋白是原核生物中特有的一类具有铁离子结合和抗氧化损伤功能的重要蛋白。利用体外PCR扩增技术和体内同源重组方法,获得了耐辐射奇球菌(Deinococcus radiodurans)dps全基因(DRB0092)缺失突变株。对突变株和野生型分别进行不同浓度过氧化氢(H2O2)处理,结果表明:与野生型菌株R1相比,dps突变株在低浓度H2O2(≤10mmol/L)条件下存活率急剧下降,而高浓度(≥30mmol/L)下则完全致死。Native-PAGE活性染色结果显示,稳定生长期dps突变株体内两种过氧化氢酶(KatA和KatB)的活性较野生型R1分别上调2.3倍和2.6倍。通过质粒构建和大肠杆菌诱导表达,获得可溶性Dps蛋白。体外结合和DNA保护实验结果显示:Dps具有明显的DNA结合功能,并能保护质粒DNA免受羟自由基攻击。本研究证明,Dps蛋白在耐辐射奇球菌抗氧化体系中发挥重要作用,可能对该菌极端抗性机制有重要贡献。  相似文献   

8.
用流式细胞计(flow cytometry,FCM)测定H2O2损伤后的红细胞(RBC)与IgG的结合能力,并直接检测细胞自发荧光的变化,以研究H2O2对RBC抗原性和脂质过氧化(LPO)荧光产物生成的影响.结果表明RBC抗原性和自发荧光变化与H2O2浓度和作用时间有关,抗原性变化对H2O2更敏感,比引起自发荧光明显增强所需H2O2浓度低两个数量级;还发现了RBC抗原性和自发荧光的变化与细胞的散射光有相关性.  相似文献   

9.
采用以下方法探讨SelS在内皮细胞中的表达和作用:将SelS基因克隆到真核表达载体pLNCX2,RT-PCR、XhoⅠ/ClaⅠ双酶切以及DNA序列分析验证目的基因;利用脂质体转染技术将pLNCX2-SelS或pLNCX2转染至人脐静脉内皮细胞(ECV304细胞),RT-PCR检测重组基因SelS的表达;MTT方法检测转染后过氧化氢(H2O2)对内皮细胞增殖能力的影响;硫代巴比妥酸法测定暴露于H2O2中不同转染组细胞脂质过氧化产物丙二醛含量. 结果表明:成功构建真核表达载体pLNCX2-SelS;转染后重组SelS mRNA表达水平是内源性水平的1.76倍;H2O2对ECV304细胞损伤后,高表达SelS组细胞活性增强、H2O2诱导产生的丙二醛减少. 上述结果表明,高表达SelS可保护内皮细胞免于H2O2诱导的细胞损伤,其作用机制与抗氧化有关.  相似文献   

10.
活性氧自由基对心肌细胞损伤效应研究   总被引:5,自引:0,他引:5  
为探讨活性氧自由基对心肌细胞的影响 ,采用胰蛋白酶酶消化法分离SD乳鼠心肌细胞 ,培养于适当的条件并观察其形态学和生理学方面的特征 ;加入H2 活性氧刺激心肌细胞 ,模拟氧自由基损伤心肌细胞方式 ,构建心肌细胞缺血再灌注损伤的模型并了解H2 对心肌细胞的损伤作用。结果表明胰蛋白酶消化分离的心肌细胞能够在体外完好生长 ,并能够在一段时间内维持其原有的生理特性 ;MTT检测结果和形态学观察结果表明H2 对心肌细胞的损伤与其浓度和作用时间呈正比关系 ,TUNEL和DNA凝胶电泳分析结果显示 ,H2 在心肌细胞中的积累是造成细胞凋亡的主要因素之一。  相似文献   

11.
The aim of this study was to evaluate the effects of organosulfurs, isothiocyanates and vitamin C towards hydrogen peroxide-induced DNA damage (DNA strand breaks and oxidized purines/pyrimidines) in human hepatoma cells (HepG2), using the Comet assay. Treatment with hydrogen peroxide (H(2)O(2)) increased the levels of DNA strand breaks and oxidized purine and pyrimidine bases, in a concentration and time dependent manner. Organosulfur compounds (OSCs) reduced DNA strand breaks induced by H(2)O(2). In addition, OSCs also decreased the levels of oxidized pyrimidines. However, none of the OSCs tested reduced the levels of oxidized purines. Isothiocyanates compounds (ITCs) and vitamin C showed protective effects towards H(2)O(2)-induced DNA strand breaks and oxidized purine and pyrimidine bases. The results indicate that removal of oxidized purine and pyrimidine bases by ITCs was more efficient than by OSCs and vitamin C. Our findings suggest that OSCs, ITCs and vitamin C could exert their protective effects towards H(2)O(2)-induced DNA strand breaks and oxidative DNA damage by the free radical-scavenging efficiency of these compounds.  相似文献   

12.
Incubation of human leukocytes with cysteamine can lead to the induction of DNA strand breaks. The induction of breaks is biphasic with increasing concentration of scavenger. The number of breaks increases in a dose-dependent manner to a maximum and then decreases at higher concentrations. Catalase has been shown to prevent the production of breaks, indicating an involvement of hydrogen peroxide. Cysteamine reacts with oxygen to generate hydrogen peroxide but at higher concentrations it also reacts with hydrogen peroxide. Thus, the biphasic effect of cysteamine on leukocyte DNA may be due to the sum of two separate reaction pathways. (i) Cysteamine reacts with oxygen to generate hydrogen peroxide which leads to DNA strand breakage. (ii) At higher concentrations, it eliminates hydrogen peroxide by reacting with it, thereby protecting the cellular DNA. Other antioxidant scavengers such as WR2721, acetylcysteine and ascorbate can also autooxidize to produce strand breaks. Thiourea and tetramethylurea do not. When tested for their ability to protect cells against DNA damage from added H2O2, the agent which most damaging by itself, cysteamine, was also the most protective.  相似文献   

13.
The present study reports the protective effects of kolaviron, a Garcinia biflavonoid from the seeds of Garcinia kola widely consumed in some West African countries against oxidative damage to molecular targets ex-vivo and in vitro. Treatment with hydrogen peroxide (H2O2) at a concentration of 100 micromol/L increased the levels of DNA strand breaks and oxidized purine (formamidopyrimidine glycosylase (FPG) and pyrimidine (endonuclease III (ENDO III) sites) bases in both human lymphocytes and rat liver cells using alkaline single cell gel electrophoresis (the comet assay). Kolaviron was protective at concentrations between 30-90 micromol/L and decreased H2O2-induced DNA strand breaks and oxidized bases. Neither alpha-tocopherol nor curcumin decreased H2O2-induced DNA damage in this assay. In lymphocytes incubated with Fe3+/GSH, Fe3+ was reduced to Fe2+ by GSH initiating a free radical generating reaction which induced 11.7, 6.3, and 4.9 fold increase respectively in strand breaks, ENDO III and FPG sensitive sites compared with control levels. Deferoxamine (2 mmol/L), an established iron chelator significantly inhibited GSH/Fe3+-induced strand breaks and oxidized base damage. Similarly, kolaviron at 30 and 90 micromol/L significantly attenuated GSH/Fe3+-induced strand breaks as well as base oxidation. Kolaviron (100 mg/kg bw) administered to rats for one week protected rat liver cells against H2O2-induced formation of strand breaks, ENDO III, and FPG sensitive sites, Fe3+/EDTA/ascorbate-induced malondialdehyde formation and protein oxidation using gamma-glutamyl semialdehyde (GGS) and 2-amino-adipic semialdehyde (AAS) as biomarkers of oxidative damage to proteins. We suggest that kolaviron exhibits protective effects against oxidative damage to molecular targets via scavenging of free radicals and iron binding. Kolaviron may therefore be relevant in the chemoprevention of oxidant-induced genotoxicity and possibly human carcinogenesis.  相似文献   

14.
X-ray-induced DNA base damage can be detected using endonuclease III and formamidopyrimidine-glycosylase, which create DNA strand breaks at enzyme-sensitive sites. Strand breaks can then be measured with excellent sensitivity using the alkaline comet assay, a single-cell gel electrophoresis method that detects DNA damage in individual cells. In using this approach to measure the oxygen enhancement ratio (OER) for radiation-induced base damage, we observed that the number of enzyme-sensitive sites increased with dose up to 4 Gy in air and 12 Gy in hypoxic WIL2NS cells. After rejoining of radiation-induced strand breaks, base damage was detected more easily after higher doses. The number of radiation-induced enzyme-sensitive sites was similar under both air and nitrogen. Base damage produced by hydrogen peroxide and 4-nitroquinoline-N-oxide (4NQO) was also measured. Results with hydrogen peroxide (20 min at 4 degrees C) were similar to those observed for X rays, indicating that enzyme-sensitive sites could be detected most efficiently when few direct strand breaks were present. Removing DNA-associated proteins before irradiation did not affect the ability to detect base damage. Base damage produced by 4NQO (30 min at 37 degrees C) was readily apparent after treatment with low concentrations of the drug when few 4NQO-induced strand breaks were present, but the detection sensitivity decreased rapidly as direct strand breaks increased after treatment with higher concentrations. We conclude that: (1) the OER for base damage is approximately 1.0, and (2) the presence of direct DNA strand breaks (>2000-4000 per cell) prevents accurate detection of base damage measured as enzyme-sensitive sites with the alkaline comet method.  相似文献   

15.
The induction of DNA strand breaks by fission neutrons was studied in aqueous plasmid (pBR322) DNA under aerobic conditions for a wide range of hydroxyl radical (*OH) scavenger concentrations and was compared to the induction of strand breaks by 6OCo gamma rays. Strand breaks were measured using agarose gel electrophoresis coupled with sensitive 32P-based phosphor imaging. Yields are reported for DNA single-strand breaks (SSBs) and double-strand breaks formed linearly with dose (alphaDSBs). The fraction of alphaDSBs that were dependent on the multiply damaged site (MDS) or clustered damage mechanism was also calculated using a model. G values for SSBs and alphaDSBs declined with increasing *OH scavenging capacity. However, with increasing *OH scavenging capacities, the decrease in yields of strand breaks for fission neutrons was not as pronounced as for gamma rays. The percentage of alphaDSBs for gamma rays was dependent on *OH scavenging capacity, appearing negligible at low scavenging capacities but increasing at higher scavenging capacities. In contrast, fission neutrons induced high percentages of alphaDSBs that were approximately independent of *OH scavenging capacity. The levels of alphaDSBs formed by the MDS mechanism after exposure to fission neutrons are consistent with the expected distinctive features of high-LET energy deposition events and track structure. The results also confirm observations made by others that even for low-LET radiation, the MDS mechanism contributes significantly to DNA damage at cell-like scavenging conditions.  相似文献   

16.
The genotoxic effect of chloroquine (CQ), a 4-aminoquinoline antimalarial drug was investigated in rat liver cells using the alkaline comet assay. Chloroquine (0–1000 μmol/L) significantly increased DNA strand breaks of rat liver cells dose-dependently. Rat liver cells exposed to CQ (100–500 μmol/L) and treated with endonuclease III and formamidopyrimidine-DNA glycosylase, the bacterial DNA repair enzymes that recognize oxidized pyrimidine and purine, respectively, showed greater DNA damage than those not treated with the enzymes, providing evidence that CQ induced oxidation of purines and pyrimidines. Treatment of cells with 5 mmol/L N-acetylcysteine, an intracellular reactive oxygen species (ROS) scavenger, and 100 μmol/L and 250 μmol/L deferoxamine, an established iron chelator, significantly decreased the CQ-induced strand breaks and base oxidation, respectively. Similarly, the formation of DNA strand breaks and oxidized bases was prevented by vitamin C (10 μmol/L) (a water-soluble antioxidant), quercetin (50 μmol/L) (an antioxidant flavonoid), and kolaviron (30 μmol/L and 90 μmol/L) (an antioxidant and a liver hepatoprotective phytochemical). The results indicate that the genotoxicity of CQ in rat liver cells might involve ROS and that free radical scavengers may elicit protective effects in these cells.  相似文献   

17.
Rooibos tea (Aspalathus linearis) was extracted by refluxing with water and 75% ethanol as a solvent. Antioxidant activity and protective effect on DNA strand scission were investigated by using different antioxidant assay systems and DNA strand nicking assay, respectively. 75% Ethanol extract has higher content of total soluble phenolics and flavonoid than water extract. Antioxidant activities such as hydrogen donating capacity and scavenging activity of hydrogen peroxide were higher in 75% ethanol extract than in water extract except the rate constant with hydroxyl radical. Peroxyl radical induced DNA strand scission was prevented by both 75% ethanol and water extract and hydroxyl radical induced DNA strand scission was not. This result indicates that total soluble phenolics, specially flavonoid, of Rooibos tea are responsible for several kinds of antioxidant activities and preventive activity on peroxyl radical induced DNA strand scission.  相似文献   

18.
UV-B-induced oxidative damage and the protective effect of exopolysaccharides (EPS) in Microcoleus vaginatus, a cyanobacterium isolated from desert crust, were investigated. After being irradiated with UV-B radiation, photosynthetic activity (Fv/Fm), cellular total carbohydrates, EPS and sucrose production of irradiated cells decreased, while reducing sugars, reactive oxygen species (ROS) generation, malondialdehyde (MDA) production and DNA strand breaks increased significantly. However, when pretreated with 100 mg/L exogenous EPS, EPS production in the culture medium of UV-B stressed cells decreased significantly; Fv/Fm, cellular total carbohydrates, reducing sugars and sucrose synthase (SS) activity of irradiated cells increased significantly, while ROS generation, MDA production and DNA strand breaks of irradiated cells decreased significantly. The results suggested that EPS exhibited a significant protective effect on DNA strand breaks and lipid peroxidation by effectively eliminating ROS induced by UV-B radiation in M. vaginatus.  相似文献   

19.
 本文将反向交变电场和六角形电极电场这两种脉冲电场凝胶电泳技术应用于X线照射小鼠乳癌细胞SR-1所致DNA双链断裂的检测,在本实验条件下,用这种电泳都能检测到低至1.5Gy照射所产生的DNA双链断裂,并且用六角形电极电场电泳获得了DNA双链断裂程度与照射剂量之间的良好线性关系,此外,还用此方法观察了不同浓度自由基清除剂DMSO对X线照射SR-1细胞所致DNA双链断裂的保护作用,结果进一步证实本方法的可靠性。  相似文献   

20.
This work presents a neutral filter elution method for detecting DNA double strand breaks in mouse L1210 cells after X-ray. The assay will detect the number of double strand breaks induced by as little as 1000 rad of X-ray. The rate of DNA elution through the filters under neutral conditions increases with X-ray dose. Certain conditions for deproteinization, pH, and filter type are shown to increase the assay's sensitivity. Hydrogen peroxide and Bleomycin also induce apparent DNA double strand breaks, although the ratios of double to single strand breaks vary from those produced by X-ray. The introduction of double strand cuts by HpA I restriction endonuclease in DNA lysed on filters results in a rapid rate of elution under neutral conditions, implying that the method can detect double strand breaks if they exist in the DNA. The eluted DNA bands with a double stranded DNA marker in cesium chloride. This evidence suggests that the assay detects DNA double strand breaks. L1210 cells are shown to rejoin most of the DNA double strand breaks induced by 5-10 krad of X-ray with a half-time of about 40 minutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号