首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Several nonsedating histamine H1-receptor antagonists are associated with torsades de pointes ventricular tachycardia. The objectives of this study were to: (i) compare electrocardiographic, monophasic action potential, and arrhythmogenic effects of sedating and nonsedating H1-receptor antagonists, and (ii) identify correlates of drug-induced torsades de pointes in an isolated ventricle model. Isolated, electrically paced (1-3 Hz) rabbit ventricles were Langendorff-perfused with either drug-free Tyrode's solution or one of the following: (i) the sedating H1-receptor antagonist hydroxyzine (0.1-30 microM), (ii) cetirizine, a nonsedating metabolite of hydroxyzine (1-300 microM), and (iii) the nonsedating, putatively arrhythmogenic H1-receptor antagonist astemizole (0.1-30 microM). Volume conducted electrocardiographic signals and monophasic action potentials from the periapical left ventricular endocardium and epicardium were recorded. There were no apparent changes in control (n = 15) or hydroxyzine-perfused (n = 7) hearts. Cetirizine (n = 13) produced a mild biphasic electrocardiographic QT interval prolongation and was associated with early afterdepolarizations, but not with torsades de pointes. Astemizole (n = 11) lengthened QT intervals, and at high concentration (30 microM) induced torsades de pointes in 10 of 11 hearts (P < 0.001 vs. all other groups). These findings are consistent with previously reported repolarizing current inhibition by cetirizine, but may additionally indicate "compensatory" inhibition of inward currents at higher concentrations. By contrast, astemizole-induced changes are consistent with unopposed repolarizing current inhibition.  相似文献   

2.
We evaluated the role played by the autonomic nervous system in producing non-linear dynamics in short heart period variability (HPV) series recorded in healthy young humans. Non-linear dynamics are detected using an index of predictability based on a local non-linear predictor and a surrogate data approach. Different types of surrogates are utilized: (i) phase-randomized Fourier-transform based (FT) data; (ii) amplitude-adjusted FT (AAFT) data; and (iii) iteratively refined AAFT (IAAFT) data of two types (IAAFT-1 and IAAFT-2). The approach was applied to experimental protocols activating or blocking the sympathetic or parasympathetic branches of the autonomic nervous system or periodically perturbing cardiovascular control via paced respiration at different breathing rates. We found that short-term HPV was mostly linear at rest. Experimental protocols activating the sympathetic or parasympathetic nervous system did not produce non-linear dynamics. In contrast, paced respiration, especially at slow breathing rates, elicited significantly non-linear dynamics. Therefore, in short-term HPV ( approximately 300 beats) the use of non-linear models is not supported by the data, except under conditions whereby the subject is constrained to a slow respiratory rate.  相似文献   

3.
Healthy subjects under rhythmic breathing have heart interbeat intervals with a respiratory band in the frequency domain that can be an index of vagal activity. Diabetes Mellitus Type II (DM) affects the autonomic nervous system of patients, thus it can be expected changes on the vagal activity. Here, the influence of DM on the breathing modulation of the heart rate is evaluated by analyzing in the frequency domain heart interbeat interval (IBI) records obtained from 30 recently diagnosed, 15 long standing DM patients, and 30 control subjects during standardized clinical tests of controlled breathing at 0.1 Hz, supine rest and standing upright. Fourier spectral analysis of IBI records quantifies heart rate variability in different regions: low-frequencies (LF, 0.04–0.15 Hz), high-frequencies (HF, 0.15–0.4 Hz), and a controlled breathing peak (RP, centered around 0.1 Hz). Two new parameters are introduced: the frequency radius rf (square root of the sum of LF and HF squared) and β (power of RP divided by the sum of LF and HF). As diabetes evolves, the controlled breathing peak loses power and shifts to smaller frequencies, indicating that heart rate modulation is slower in diabetic patients than in controls. In contrast to the traditional parameters LF, HF and LF/HF, which do not show significant differences between the three populations in neither of the clinical tests, the new parameters rf and β, distinguish between control and diabetic subjects in the case of controlled breathing. Sympathetic activity that is driven by the baroreceptor reflex associated with the 0.1 Hz breathing modulations is affected in DM patients. Diabetes produces not only a rigid heartbeat with less autonomic induced variability (rf diminishes), but also alters the coupling between breathing and heart rate (reduced β), due to a progressive decline of vagal and sympathetic activity.  相似文献   

4.
The time lag of the QT interval adaptation to heart rate changes (QT/RR hysteresis) was studied in 40 healthy subjects (18 females; mean age, 30.4+/-8.1 yr) with 3 separate daytime (>13 h) 12-lead electrocardiograms (ECG) in each subject. In each recording, 330 individual 10-s ECG segments were measured, including 100 segments preceded by 2 min of heart rate varying greater than +/-2 beats/min. Other segments were preceded by a stable heart rate. In segments preceded by variable rate, QT/RR hysteresis was characterized by lambda parameters of the exponential decay models. The intrasubject SDs of lambda values were compared with the intersubject SD of the individual means. The lambda values were also correlated to individually optimized parameters of heart rate correction. Intrasubject SDs of lambda were substantially smaller than the population SD of individual means (0.390+/-0.197 vs. 0.711, P<0.0001). The lambda values were unrelated to the QT/RR correction parameters. When compared with the corrected QT (QTc) for averaged RR intervals in 10-s ECGs and with the averaged RR intervals in 2-min history, QTc for QT/RR hysteresis led to a substantially smaller SD of QTc values (11.4+/-2.00, 6.33+/-1.31, and 4.66+/-0.85 ms, respectively, P<0.0001). Thus the speed with which the QT interval adapts to heart rate changes is highly individual with intrasubject stability and intersubject variability. QT/RR hysteresis is independent of the static QT/RR relationship and should be considered as a separate physiological process. The combination of individual heart rate correction with individual hysteresis correction of the QT interval is likely to lead to substantial improvements of cardiac repolarization studies.  相似文献   

5.
This study sought to test the hypothesis that alterations in the relationships between (i) mean arterial pressure (MAP) and heart rate (HR), (ii) cardiac output (CO) and MAP, and (iii) total peripheral resistance (TPR) and MAP variability contribute to the diminished dynamic control of cardiovascular function with advanced age. Six-minute hemodynamic data were continuously recorded in 11 elderly (70 +/- 2 years) and 11 young (26 +/- 1 year) healthy volunteers under supine resting condition and during lower body negative pressure-induced orthostatic challenge. The data were converted using fast Fourier transform, and the ratio of cross-spectra to auto-spectra between two signals (i.e., MAP-HR, CO-MAP, TPR-MAP) was computed for transfer function analysis. In the low-frequency ranges (LF; 0.04-0.14 Hz) and high-frequency ranges (0.15-0.30 Hz), the gain and coherence of the transfer function describing the relationship between MAP-HR signals were significantly greater in younger than in older adults. The phase degree was significantly >0 in both groups under all conditions, suggesting that the MAP variability preceded the HR variability. In contrast, the coherence between CO-MAP signals in both age groups was <0.5, indicating that the beat-to-beat MAP variability was not significantly related to the CO signals. However, the transfer function gain and coherence of TPR-MAP signals were significantly greater in the young group (coherence >/=0.5 in the LF range), suggesting a more effective dynamic vasomotor control. In conclusion, the oscillations in CO-MAP signals are not significantly synchronized or not related in a simply linear fashion in both age groups. The MAP variability is more related to the oscillation of TPR signals in the young group only. Advanced age not only diminishes MAP-HR transfer function gain, but also weakens its coherence. Thus, alterations in the relationship between MAP-HR variability and TPR-MAP variability may significantly contribute to the diminished dynamic control of cardiovascular function manifest in the elderly.  相似文献   

6.
 The goal of our study was to determine whether evidence for chaos in heart rate variability (HRV) can be observed when the respiratory input to the autonomic controller of heart rate is forced by the deterministic pattern associated with periodic breathing. We simultaneously recorded, in supine healthy volunteers, RR intervals and breathing volumes for 20 to 30 min (1024 data point series) during three protocols: rest (control), fixed breathing (15 breath/min) and voluntary periodic breathing (3 breaths with 2 s inspiration and 2 s expiration followed by an 8 s breath hold). On both the RR interval and breathing volume series we applied the non-linear prediction method (Sugihara and May algorithm) to the original time series and to distribution-conserved isospectral surrogate data. Our results showed that, in contrast to the control test, during both fixed and voluntary periodic breathing the variability of breathing volumes was clearly deterministic non-chaotic. During all the three protocols, the RR-interval series’ non-linear predictability was consistent with one of a chaotic series. However, at rest, no clear difference was observed between the RR-interval series and their surrogates, which means that no clear chaos was observed. During fixed breathing a difference appeared, and this difference seemed clearer during voluntary periodic breathing. We concluded that HRV dynamics were chaotic when respiration was forced with a deterministic non-chaotic pattern and that normal spontaneous respiratory influences might mask the normally chaotic pattern in HRV. Received: 7 August 1995 / Accepted in revised form: 20 March 1997  相似文献   

7.
Cardiovascular variability reflects autonomic regulation of blood pressure (BP) and heart rate (HR). However, systolic BP (SBP) variability also may be induced by fluctuations in stroke volume through left ventricular end-diastolic pressure (LVEDP) variability via dynamic ventricular-arterial coupling during respiration. We hypothesized that dynamic ventricular-arterial coupling is modulated by changes in left ventricular compliance associated with altered preload and that a cascade control mechanism of ventricular-arterial coupling with arterial-cardiac baroreflex function contributes to the genesis of cardiovascular variability at the respiratory frequency. Seven healthy young subjects underwent 6-min recordings of beat-by-beat LVEDP, SBP, and HR in the supine position with controlled respiration at 0.2 Hz during hyper- and hypovolemia. Spectral and transfer function analysis of these variables was conducted between 0.18 and 0.22 Hz. Dynamic ventricular-arterial coupling gain (Gain LVEDP-SBP) was smaller by 25% (P = 0.009) during hypervolemia than during hypovolemia, whereas arterial-cardiac baroreflex function gain (Gain SBP-HR) was similar. As predicted from a cascade model, a linear relationship between Gain LVEDP-HR and LVEDP-SBP times Gain SBP-HR was identified (R(2) = 0.93, P < 0.001). Gain LVEDP-HR was smaller by 40% (P = 0.04) during hypervolemia than during hypovolemia, leading to a reduction in spectral power of HR variability by 45% (P = 0.08). We conclude that dynamic ventricular-arterial coupling gain is reduced during hypervolemia because of a decrease in left ventricular compliance. A cascade model of ventricular-arterial coupling with the arterial-cardiac baroreflex contributes to the genesis of cardiovascular variability at the respiratory frequency.  相似文献   

8.
To determine the short-term effects of non-invasive positive pressure ventilation (PPV) on spontaneous baroreflex sensitivity, we acquired time series of RR interval and beat-to-beat blood pressure in 55 healthy volunteers (mean age 46.5+/-10.5 years), who performed breathing tests on four occasions at frequencies of 12 and 15/min, with application of PPV of 5 mbar, and without positive pressure (control). Using spectral and transfer function analysis, we estimated RR interval variability (HRV) and systolic blood pressure variability (SBPV), as well as the gain (alpha-index) and phase shift (Phi) of the baroreceptor reflex for low- (LF) and high-frequency (HF) bands. Compared to control breathing, PPV at 12 and 15/min led to an increase in mean RR (p<0.001) and blood pressure (p<0.05). The alpha-index in the HF band increased significantly due to PPV for both respiratory frequencies (p<0.05). Phase shifts did not show significant changes in response to pressure ventilation. These results indicate that short-term administration of PPV in normal subjects elicits significant enhancement in the HF index of baroreflex gain. These findings may contribute to understanding the mechanisms, indications, and effectiveness of positive pressure breathing strategies in treating cardiorespiratory and other disease conditions.  相似文献   

9.
We studied biophysical features of interaction between 0.1 Hz oscillations in heart rate variability (HRV) and distal blood flow (DBF) variability in healthy subjects and patients after acute myocardial infarction (MI). 125 patients after acute MI (72 male and 53 female) aged between 30 and 83 years and 33 healthy subjects (23 male and 10 female) aged between 20 and 46 years were included in the study. The duration of prospective study of MI patients was one year. We estimated the delay in coupling between 0.1 Hz oscillations in H RV and DBF variability. It is found out that in healthy subjects the delay in coupling from heart rate to DBF is less than delay in coupling from DBF to heart rate. Acute MI results mainly in disruption of coupling from heart rate to DBF. This coupling is partially restored in one year after acute MI, but the delay in coupling remains significantly smaller than in healthy subjects. The features of coupling from DBF to heart rate are restored in MI patients within three weeks after infarction. After this period the delay in this coupling in MI patients is approximately the same as it is in healthy subjects.  相似文献   

10.
It is still an enigma how human subjects combine visual and vestibular inputs for their self-motion perception. Visual cues have the benefit of high spatial resolution but entail the danger of self motion illusions. We performed psychophysical experiments (verbal estimates as well as pointer indications of perceived self-motion in space) in normal subjects (Ns) and patients with loss of vestibular function (Ps). Subjects were presented with horizontal sinusoidal rotations of an optokinetic pattern (OKP) alone (visual stimulus; 0.025-3.2 Hz; displacement amplitude, 8 degrees) or in combinations with rotations of a Bárány chair (vestibular stimulus; 0.025-0.4 Hz; +/- 8 degrees). We found that specific instructions to the subjects created different perceptual states in which their self-motion perception essentially reflected three processing steps during pure visual stimulation: i) When Ns were primed by a procedure based on induced motion and then they estimated perceived self-rotation upon pure optokinetic stimulation (circular vection, CV), the CV has a gain close to unity up to frequencies of almost 0.8 Hz, followed by a sharp decrease at higher frequencies (i.e., characteristics resembling those of the optokinetic reflex, OKR, and of smooth pursuit, SP). ii) When Ns were instructed to "stare through" the optokinetic pattern, CV was absent at high frequency, but increasingly developed as frequency was decreased below 0.1 Hz. iii) When Ns "looked at" the optokinetic pattern (accurately tracked it with their eyes) CV was usually absent, even at low frequency. CV in Ps showed similar dynamics as in Ns in condition i), independently of the instruction. During vestibular stimulation, self-motion perception in Ns fell from a maximum at 0.4 Hz to zero at 0.025 Hz. When vestibular stimulation was combined with visual stimulation while Ns "stared through" OKP, perception at low frequencies became modulated in magnitude. When Ns "looked" at OKP, this modulation was reduced, apart from the synergistic stimulus combination (OKP stationary) where magnitude was similar as during "staring". The obtained gain and phase curves of the perception were incompatible with linear systems prediction. We therefore describe the present findings by a non-linear dynamic model in which the visual input is processed in three steps: i) It shows dynamics similar to those of OKR and SP; ii) it is shaped to complement the vestibular dynamics and is fused with a vestibular signal by linear summation; and iii) it can be suppressed by a visual-vestibular conflict mechanism when the visual scene is moving in space. Finally, an important element of the model is a velocity threshold of about 1.2 degrees/s which is instrumental in maintaining perceptual stability and in explaining the observed dynamics of perception. We conclude from the experimental and theoretical evidence that self-motion perception normally is related to the visual scene as a reference, while the vestibular input is used to check the kinematic state of the scene; if the scene appears to move, the visual signal becomes suppressed and perception is based on the vestibular cue.  相似文献   

11.
Enzymatic methods are described for the analysis of ATP, ATP + ADP, total adenylates, or P-creatine in biological samples. The methods include (i) direct fluorometric procedures for the measurement of 0.1–10 nmol using hexokinase and glucose-6-P-dehydrogenase as the indicator step; (ii) an enzymatic cycling procedure with a sensitivity of 1–50 pmol; and (iii) the measurement of light emission in the luciferin-luciferase system with a sensitivity of 0.1–80 pmol.  相似文献   

12.
The weevil Diaprepes abbreviatus shows three kinds of same-sex mountings: males mount other unpaired males, males mount males already engaged in copulation and females mount other females. Four hypotheses were evaluated in order to explain same-sex matings by males: (i) female mimicry by inferior males, (ii) dominance of larger males which affects the behaviour of small males, (iii) sperm transfer in which smaller males gain some reproductive success by 'hitchhiking' their sperm with the sperm of larger males, and (iv) poor sex recognition. Data from mate choice and sperm competition experiments rejected the female mimicry, dominance and sperm transfer hypotheses and supported the poor sex recognition hypothesis. We tested three hypotheses in order to explain female mounting behaviour: (i) females mimic male behaviour in order to reduce sexual harassment by males, (ii) females mount other females in order to appear larger and thereby attract more and larger males for mating, and (iii) female mimicry of males. The results of our mate choice experiments suggested that the female mimicry of males hypothesis best explains the observed female mounting behaviour. This result is also consistent with the poor sex recognition hypothesis which is the most likely explanation for male and female intrasexual mating behaviour in many insect species.  相似文献   

13.
The possibility of using intense sound as a deterrent for juvenile Atlantic salmon ( Sulmo salar L. ) was studied by recording both physiological awareness reactions in an acoustic tube and behavioural avoidance responses in a pool. The measured awareness reactions consisted of decreased heart rate and breathing movements. Three criteria for the awareness reaction were used to compare the effect of different frequencies between 5 and 150 Hz: (i) threshold for spontaneous awareness reactions relative to the hearing thresholds, (ii) magnitude of the change in heart rate, (iii) degree of habituation to sound. After these criteria the lowest frequencies (5–10 Hz) were most effective in eliciting an awareness reaction from the fish. The responses of freely swimming fish to 10 and 150 Hz sounds were studied in an artificial pool. Juvenile salmon showed avoidance responses to 10 Hz stimulation at intensities 10–15 dB above the threshold for spontaneous awareness reactions measured in the acoustic tube. The 150 Hz sound failed to evoke avoidance responses, even at a level 30 dB above the threshold for spontaneous awareness reactions.  相似文献   

14.
Suggestions were made that increased myocardial sympathetic activity is reflected by elevated QT variability (dynamic changes in QT interval duration). However, the relationship between QT variability and the amount of norepinephrine released from the cardiac sympathetic terminals is unknown. We thus attempted to assess this relationship. The study was performed in 17 subjects (12 with major depressive disorder and 5 with panic disorder). Cardiac norepinephrine spillover (measured by direct catheter technique coupled with norepinephrine isotope dilution methodology) was assessed before and 4 mo after treatment with selective serotonin reuptake inhibitor (SSRI) antidepressants. The distribution of the cardiac norepinephrine spillover was bimodal, with the majority of patients having values of < or =10 ng/min. There was a positive correlation between cardiac norepinephrine spillover and corrected QT interval (r = 0.7, P = 0.03) but not with any of the QT variability measures. However, in a subgroup of five patients who had high levels of cardiac norepinephrine spillover (>20 ng/min) a tendency for a strong positive correlation with variance of QT intervals (r = 0.9, P = 0.08) was observed. There were significant correlations between the severity of depression and QT variability indexes normalized to the heart rate [QTVi and QT interval/R-R interval (QT/RR) coherence] and between the severity of anxiety and the QT/RR residual and regression coefficient, respectively. Treatment with SSRI antidepressants substantially reduced depression score but did not affect any of the QT variability indexes. We conclude that in depression/panic disorder patients with near-normal cardiac norepinephrine levels QT variability is not correlated with cardiac norepinephrine spillover and is not affected by treatment with SSRI.  相似文献   

15.
Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide (NO) have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which may reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways, (ii) the concentrations in the tracheo-bronchial lining fluid, (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, the model illuminates the discrepancies between observed and theoretically predicted blood-breath ratios of acetone during resting conditions, i.e., in steady state. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases and thus is expected to have general relevance for a wider range of blood-borne inert gases. The chief intention of the present modeling study is to provide mechanistic relationships for further investigating the exhalation kinetics of acetone and other water-soluble species. This quantitative approach is a first step towards new guidelines for breath gas analyses of volatile organic compounds, similar to those for nitric oxide.  相似文献   

16.

Background

Baroreflex allows to reduce sudden rises or falls of arterial pressure through parallel RR interval fluctuations induced by autonomic nervous system. During spontaneous breathing, the application of positive end-expiratory pressure (PEEP) may affect the autonomic nervous system, as suggested by changes in baroreflex efficiency and RR variability. During mechanical ventilation, some patients have stable cardiorespiratory phase difference and high-frequency amplitude of RR variability (HF-RR amplitude) over time and others do not. Our first hypothesis was that a steady pattern could be associated with reduced baroreflex sensitivity and HF-RR amplitude, reflecting a blunted autonomic nervous function. Our second hypothesis was that PEEP, widely used in critical care patients, could affect their autonomic function, promoting both steady pattern and reduced baroreflex sensitivity.

Methods

We tested the effect of increasing PEEP from 5 to 10 cm H2O on the breathing variability of arterial pressure and RR intervals, and on the baroreflex. Invasive arterial pressure, ECG and ventilatory flow were recorded in 23 mechanically ventilated patients during 15 minutes for both PEEP levels. HF amplitude of RR and systolic blood pressure (SBP) time series and HF phase differences between RR, SBP and ventilatory signals were continuously computed by complex demodulation. Cross-spectral analysis was used to assess the coherence and gain functions between RR and SBP, yielding baroreflex-sensitivity indices.

Results

At PEEP 10, the 12 patients with a stable pattern had lower baroreflex gain and HF-RR amplitude of variability than the 11 other patients. Increasing PEEP was generally associated with a decreased baroreflex gain and a greater stability of HF-RR amplitude and cardiorespiratory phase difference. Four patients who exhibited a variable pattern at PEEP 5 became stable at PEEP 10. At PEEP 10, a stable pattern was associated with higher organ failure score and catecholamine dosage.

Conclusions

During mechanical ventilation, stable HF-RR amplitude and cardiorespiratory phase difference over time reflect a blunted autonomic nervous function which might worsen as PEEP increases.  相似文献   

17.
This study focuses on predicting breathing pattern, which is crucial to deal with system latency in the treatments of moving lung tumors. Predicting respiratory motion in real-time is challenging, due to the inherent chaotic nature of breathing patterns, i.e. sensitive dependence on initial conditions. In this work, nonlinear prediction methods are used to predict the short-term evolution of the respiratory system for 62 patients, whose breathing time series was acquired using respiratory position management (RPM) system. Single step and N-point multi step prediction are performed for sampling rates of 5 Hz and 10 Hz. We compare the employed non-linear prediction methods with respect to prediction accuracy to Adaptive Infinite Impulse Response (IIR) prediction filters. A Local Average Model (LAM) and local linear models (LLMs) combined with a set of linear regularization techniques to solve ill-posed regression problems are implemented. For all sampling frequencies both single step and N-point multi step prediction results obtained using LAM and LLM with regularization methods perform better than IIR prediction filters for the selected sample patients. Moreover, since the simple LAM model performs as well as the more complicated LLM models in our patient sample, its use for non-linear prediction is recommended.  相似文献   

18.
Natural enemies such as predators and parasites are known to shape intraspecific variability of behaviour and personality in natural populations, yet several key questions remain: (i) What is the relative importance of predation vs. parasitism in shaping intraspecific variation of behaviour across generations? (ii) What are the contributions of genetic and plastic effects to this behavioural divergence? (iii) And to what extent are responses to predation and parasitism repeatable across independent evolutionary lineages? We addressed these questions using Trinidadian guppies (Poecilia reticulata) (i) varying in their exposure to dangerous fish predators and Gyrodactylus ectoparasites for (ii) both wild‐caught F0 and laboratory‐reared F2 individuals and coming from (iii) multiple independent evolutionary lineages (i.e. independent drainages). Several key findings emerged. First, a population's history of predation and parasitism influenced behavioural profiles, but to different extent depending on the behaviour considered (activity, shoaling or boldness). Second, we had evidence for some genetic effects of predation regime on behaviour, with differences in activity of F2 laboratory‐reared individuals, but not for parasitism, which had only plastic effects on the boldness of wild‐caught F0 individuals. Third, the two lineages showed a mixture of parallel and nonparallel responses to predation/parasitism, with parallel responses being stronger for predation than for parasitism and for activity and boldness than for shoaling. These findings suggest that different sets of behaviours provide different pay‐offs in alternative predation/parasitism environments and that parasitism has more transient effects in shaping intraspecific variation of behaviour than does predation.  相似文献   

19.
In 1956, I decided to apply my experience in microbial genetics to developing analogous systems for human cell lines, including the selection of mutants with either a loss or gain of a biochemical function. For instance, mutants resistant to azahypoxanthine showed a loss of the HPRT enzyme (hypoxanthine phosphoribosyl transferase), whereas gain of the same enzyme was accomplished by blocking de novo purine biosynthesis with aminopterin, while supplying hypoxanthine and thymine (HAT selection). Using HAT selection, we: (i) genetically transformed HPRT- mutant cells to HPRT+ wild type by using DNA extracted from HPRT+ cells, and (ii) selected HPRT+ hybrid cells by fusing HPRT- D98/AH2 cells with skin cells. These approaches, which we dubbed in 1962 as a 'first step toward gene therapy', contributed to the later development of (i) cell fusion techniques, (ii) the development of monoclonal antibodies, (iii) routine transformation of mammalian cells with cloned genes, and (iv) methods for creating transgenic organisms.  相似文献   

20.
The reproducibility of baroreflex sensitivity (BRS in ms/mmHg; BRSf in mHz/mmHg) determined with respect to the coherence between the variability in systolic blood pressure (SBP) and inter-beat intervals (IBI) or heart rate (HR) was tested. SBP and IBI were recorded beat-to-beat for 5 min (Finapres, breathing at 0.33 Hz) in 116 subjects (aged 19-24 years) sitting at rest three times in periods of one week. BRS and BRSf was determined by a cross-spectral method in a frequency range of 0.067-0.133 Hz. Eight indices were evaluated: BRS(0.1 Hz) /BRSf(0.1 Hz) - the value at a frequency of 0.1 Hz; BRS(COHmax)/BRSf(COHmax) - the value at maximum coherence; BRS(Wcoh)/BRSf - weighted value with respect to coherence values in the whole frequency range; BRS(WPcoh)/BRS(WPcoh) - weighted value with respect to coherence for frequencies with coherence above 0.5. All indices revealed a lower intraindividual than interindividual variability (p<0.001). The individual mean values of BRS or BRSf correlated (p<0.001) with standard deviation of their individual values for all indices. Baroreflex sensitivity is an individual characteristic feature with the highest reproducibility at its low values in spite of its resting variation. Reproducibility is not influenced by modification of the spectral method used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号