首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioconversion of biodiesel-derived crude glycerol into carotenoids and lipids was investigated by a microbial conversion of an oleaginous red yeast Sporidiobolus pararoseus KM281507. The methanol content in crude glycerol (0.5%, w/v) did not show a significant effect on biomass production by strain KM281507. However, demethanolized crude glycerol significantly supported the production of biomass (8.64?±?0.13?g/L), lipids (2.92?±?0.03?g/L), β-carotene (15.76?±?0.85?mg/L), and total carotenoids (33.67?±?1.28?mg/L). The optimal conditions suggested by central composite design were crude glycerol concentration (55.04?g/L), initial pH of medium (pH 5.63) and cultivation temperature (24.01°C). Under these conditions, the production of biomass, lipids, β-carotene, and total carotenoids were elevated up to 8.83?±?0.05, 4.00?±?0.06?g/L, 27.41?±?0.20, and 53.70?±?0.48?mg/L, respectively. Moreover, an addition of olive oil (0.5???2.0%) dramatically increased the production of biomass (14.47?±?0.15?g/L), lipids (6.40?±?0.09?g/L), β-carotene (54.43?±?0.95?mg/L), and total carotenoids (70.92?±?0.51?mg/L). The oleic acid content in lipids was also increased to 75.1% (w/w) of total fatty acids, indicating a good potential to be an alternative biodiesel feedstock. Meanwhile, the β-carotene content in total carotenoids was increased to 76.7% (w/w). Hence, strain KM281507 could be a good potential source of renewable biodiesel feedstock and natural carotenoids.  相似文献   

2.
Nitrogen limited but carbon excess condition was used to obtain high cellular lipid content and production. The maximum lipid production was 51 g/L, the lipid content in the dry cell was 60 %, and the lipid productivity was 0.53 g/L/h. In the fermentation, the content of lipid was raised from 20 % of dry cell weight to 60 %, and the proportion of oleic acid was raised from 66.8 to 72.5 %. Meanwhile, the metabolism of carotenoids switched to torulene, and its proportion was raised from 30 to 58 %. This was according to torulene had the better antioxidant ability than β-carotene to protect the strain from oxidative damage proved by their ABTS* radical scavenging activity and lipid peroxidation inhibition ability. Sporidiobolus pararoseus lipid was a good source of lipid not only because of its high oleic acid composition, but also the antioxidant ability of carotenoids in the lipid.  相似文献   

3.
4.
The content and composition of pigments were examined in the third leaf of Zea mays L. plants grown under controlled environment at near-optimal temperature (24°C) or sub-optimal temperature (14°C) at a light intensity of either 200 or 600 μmol m?2 s?1. Compared to leaves grown at 24°C, leaves grown at 14°C showed a large reduction in the chlorophyll (Chl) content, a marked decrease in the Chl a/b ratio, and a large increase in the ratio of total carotenoids/Chl a+b. Leaves grown at 14°C showed a much lower content of β-carotene than leaves grown at 24°C, while the content of the carotenoids of the xanthophyll cycle (violaxanthin [V] + antheraxanthin [A] + zeaxanthin [Z]) was markedly higher in the former leaves as compared to the latter leaves; neoxanthin and lutein were affected by the growth temperature to a much lesser extent. The xanthophylls/β-carotene ratio was about three times higher in leaves grown at 14°C as compared to leaves grown at 24°C. On a chlorophyll basis, the two types of leaves hardly differed in their level of β-carotene, while the levels of the xanthophylls (including lutein and neoxanthin) were higher in 14°C-grown leaves as compared to 24°C-grown leaves. In leaves grown at 14°C, 40 and 56% of the V+A+Z pool was in the form of zeaxanthin at low light intensity and high light intensity, respectively. Only trace amounts of zeaxanthin, if any, were present in leaves grown at 24°C. The changes in the pigment composition induced by growth at sub-optimal temperature were more pronounced at a light intensity of 600 as compared to 200 μmol m?2 s?1. In the given range, the light intensity slightly affected the composition of pigments in leaves grown at 24°C. The physiological significance of the modifications to the pigment composition induced by growth at sub-optimal temperature is discussed.  相似文献   

5.
Carotenoids produced by Sporidiobolus pararoseus were studied. It was found that biomass was connected with carbon source, temperature, and pH, but carotenoids proportion was seriously influenced by dissolved oxygen and nitrogen source. Different carotenoids could be obtained by using selected optimum conditions. In the end we established the strategies to produce β-carotene or torulene. Fed-batch fermentation in fermentor was used to prove the authenticity of our conclusions. The cell biomass, β-carotene content, and β-carotene proportion could reach 56.32 g/L, 18.92 mg/L and 60.43%, respectively, by using corn steep liquor at 0–5% of dissolved oxygen saturation. β-Carotene content was 271% higher than before this addition. The cell biomass, torulene content, and torulene proportion could reach 62.47 g/L, 31.74 mg/L, and 70.41%, respectively, by using yeast extract at 30–35% of dissolved oxygen saturation. Torulene content was 152% higher than before this addition. The strategy for enhancing specific carotenoid production by selected fermentation conditions may provide an alternative approach to enhance carotenoid production with other strains.  相似文献   

6.
7.
Tissue-specific accumulation of carotenoids in carrot roots   总被引:7,自引:0,他引:7  
Baranska M  Baranski R  Schulz H  Nothnagel T 《Planta》2006,224(5):1028-1037
Raman spectroscopy can be used for sensitive detection of carotenoids in living tissue and Raman mapping provides further information about their spatial distribution in the measured plant sample. In this work, the relative content and distribution of the main carrot (Daucus carota L.) root carotenoids, α-, β-carotene, lutein and lycopene were assessed using near-infrared Fourier transform Raman spectroscopy. The pigments were measured simultaneously in situ in root sections without any preliminary sample preparation. The Raman spectra obtained from carrots of different origin and root colour had intensive bands of carotenoids that could be assigned to β-carotene (1,520 cm−1), lycopene (1,510 cm−1) and α-carotene/lutein (1,527 cm−1). The Raman mapping technique revealed detailed information regarding the relative content and distribution of these carotenoids. The level of β-carotene was heterogeneous across root sections of orange, yellow, red and purple roots, and in the secondary phloem increased gradually from periderm towards the core, but declined fast in cells close to the vascular cambium. α-carotene/lutein were deposited in younger cells with a higher rate than β-carotene while lycopene in red carrots accumulated throughout the whole secondary phloem at the same level. The results indicate developmental regulation of carotenoid genes in carrot root and that Raman spectroscopy can supply essential information on carotenogenesis useful for molecular investigations on gene expression and regulation.  相似文献   

8.
In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of Rhodotorula glutinis, that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β–carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R2 = 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (P < 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l?1) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l?1) (P < 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry.  相似文献   

9.
The extent of seasonal variation in the nutrient profile of Arthrospira biomass harvested from Lake Chitu was investigated to evaluate the variability of the quality of the product over a period of a year. Protein content varied from 47.9 to 55.7% for wet season biomass samples and from 39.2 to 40.8% for dry season samples. Dry season samples were characterized by relatively higher carbohydrate values (38.0–41.3%). Higher proportion of amino acids and unsaturated fatty acids were recorded for biomass harvested in wet season. Similarly, higher contents of phytonutrients (pigments) were recorded for wet season biomass samples: chlorophyll a (8.2–10.3 mg g?1), phycobiliproteins (104.1–120.7 mg g?1), total carotenoids (3.17–4.31 mg g?1), and β-carotene (1.24–1.61 mg g?1). The contents of Na and K were higher for a dry season biomass whereas other major (Ca, P, Mg) and trace (Mn, Fe, Cu, Zn, Se) minerals were found relatively in higher quantities in a wet season biomass. The nutritional composition of Arthrospira from Lake Chitu was found to be relatively comparable to that found in commercial Arthrospira products in the market. The significance of the findings is discussed in relation to potential sustainable production of Arthrospira biomass from this lake.  相似文献   

10.
Moringa oleifera Lam. leaves are rich source of carotenoids (provitamin A) and α-tocopherol (vitamin E), and there is a scope for their further enhancement, through elicitor mediation, thereby a great potential for addressing these vitamins deficiency. In the present study, we report the efficacy of foliar administration of biotic elicitors, carboxy-methyl chitosan and chitosan, and signaling molecules, methyl jasmonate (MJ) and salicylic acid (SA) for enhancement of major carotenoids and α-tocopherol. Highest α-tocopherol content of 49.7 mg/100 g FW was recorded upon foliar application of 0.1 mM SA after 24 h of treatment, which represented a 187.5 % increase in comparison to the untreated control. Similarly, a maximum of 52.6 mg/100 g FW lutein, and 21.8 mg/100 g FW β-carotene content were observed in leaves after 24 h of treatment with MJ, which represented a 54.0 and 20.3 % increase in comparison to the untreated control, respectively. Among the major genes of carotenoid biosynthetic pathway, the expression of lycopene β-cyclase (LCY-β) was maximum influenced after treatment with elicitors and signaling molecules, compared to phytoene synthase and phytoene desaturase, suggesting the LCY-β-mediated enhancement in the production of β-carotene in elicitor treated M. oleifera leaves. Enhanced production of α-tocopherol under respective elicitor treatment was further supported by 2.0–2.7 fold up-regulation of γ-tocopherol methyl transferase, compared to untreated control. This is the first report on elicitor-mediated enhanced production of tocopherol and carotenoids in foliage of economically important food plant.  相似文献   

11.
Carotenoids are a class of naturally occurring pigment, carrying out important biological functions in photosynthesis and involved in environmental responses including nutrition in organisms. Saproxanthin and myxol, which have monocyclic carotenoids with a γ-carotene skeleton, have been reported to show a stronger antioxidant activity than those with β-carotene and zeaxanthin. In this research, a yellow-orange bacterium of strain 11shimoA1 (JCM19538) was isolated from a seaweed collected at Nabeta Bay (Shizuoka, Japan). The 16S rRNA gene sequence of strain 11shimoA1 revealed more than 99.99 % similarity with those of Jejuia pallidilutea strains in the family Flavobacteriaceae. Strain 11shimoA1 synthesized two types of carotenoids. One of them was (3R, 3’R)-zeaxanthin with dicyclic structure and another was identified as (3R, 2’S)-2′-isopentenylsaproxanthin, a novel monocyclic carotenoid with pentenyl residue at C-2′ position of saproxanthin, using FAB-MS, 1H NMR, and CD analyses. Culturing strain 11shimoA1 in an alkaline medium at pH 9.2 resulted in a markedly increased in production of 2′-isopentenylsaproxanthin per dry cell weight, but a decreased in zeaxanthin production as compared to their respective production levels in medium with pH 7.0. These carotenoids are likely to play some roles in the adaptation of the bacterium to the environmental conditions.  相似文献   

12.
The fatty acid composition, the effect of different concentrations of nitrogen (16.5-344 mg ?L?1), phosphorus (9–45 mg? L?1), iron (9–45 mg? L?1) and salinity levels (0–20 psu) on lipid production in the green microalga Scenedesmus dimorphus KMITL, a new strain isolated from a tropical country, Thailand, were studied. The alga was isolated from a freshwater fish pond, and cultured in Chlorella medium by varying one parameter at a time. The main fatty acid composition of this strain was C16–C18 (97.52 %) fatty acids. A high lipid content was observed in conditions of 16.5 mg? L?1-N, or 22 mg ?L?1-P, or 45 mg ?L?1-Fe, or 5 psu salinity, which accumulated lipids to 20.3?±?0.4, 19.4?±?0.2, 24.7?±?0.5, and 14.3?±?0.2 % of algal biomass, respectively. Increasing lipid content and lipid productivity was noted when the alga was cultured under high iron concentration and high salinity, as well as under reduced phosphorus conditions, whereas nitrogen limitation only resulted in an increased lipid content.  相似文献   

13.
The appropriate microalgal species and the optimal nitrogen supply in culture medium are vital factors in maximizing biomass and metabolite productivities in microalgae. Vischeria stellata is an edaphic unicellular eustigmatophycean microalga. Cytological and ultrastructural characteristics and the effects of different initial nitrate-nitrogen concentrations on growth, lipid accumulation, fatty acid profile, and pigment composition were investigated in the present study. The cell structures of V. stellata changed with the degree of nutrient utilization and growth phase. The initial nitrate concentration for the optimal growth of V. stellata ranged from 6.0 to 9.0 mM. The maximum total lipid (TLs), neutral lipid (NLs), and total fatty acid (TFAs) contents were 55.9, 51.9, and 44.7 % of dry biomass, respectively. The highest volumetric productivity of TLs, NLs, and TFAs reached 0.28, 0.25, and 0.21 g L?1 day?1, respectively. V. stellata had a suitable fatty acid profile for biodiesel production, as well as containing eicosapentaenoic acid (EPA) for nutraceutical applications. In addition, the content β-carotene, increased gradually as culture time was prolonged, resulting in its exclusive production at the end of cultivation. V. stellata is a promising microalgal strain for the production of biofuels and bioproducts.  相似文献   

14.
Tomato is considered as one of the most important sources of nutrients such as lycopene, β-carotene, flavonoids, ascorbic acid (vitamin C) and hydroxyl-cinnamic acid derivatives. The quality and quantity of nutrients in tomato fruits were decreased during the severe infection of Alternaria alternata. The present study deals with the estimation of lycopene, β-carotene, phenolic and ascorbic acid content in tomato fruits which were infected with A. alternata and its toxins such as tenuazonic acid (TeA), alternariol (AOH) and alternariol monomethyl ether (AME). The lycopene, β-carotene, ascorbic acid and phenolic content were found lowest in pathogen-infected fruits i.e. (0.66 ± 0.03 mg/g), (0.14 ± 0.01 mg/g), (1.89 ± 0.2 mg/g) and (0.58 ± 0.05 mg/g), respectively, followed by toxins-treated samples as compared to the control. The results concluded that A. alternata mostly affects the nutritional values of tomato fruits due to the combined effect of the toxins.  相似文献   

15.
In this study, we set out to investigate the effect of sodium chloride (NaCl) on carotenoid and flavonoid production by the black nightshade (Solanum nigrum L.). The study was carried out under green chamber conditions using seedlings subjected to 0, 50, 100 and 150 mM NaCl for 3 weeks. The negative effect of NaCl on dry biomass production of roots and leaves were accompanied by a significant restriction in K+, Ca2+ and Mg2+ ion uptake and by an increase in Na+ ion concentrations, the effects of which were most pronounced at the highest NaCl level. Salt stress also induced oxidative stress, according to the amplified levels of thiobarbituric acid reactive substances and relative ion leakage ratio. Expression of some related carotenoid (phytoene synthase 2 and β-lycopene cyclase) and flavonoids genes (phenylalanine ammonialyase, chalcone synthase and flavonol synthase) were induced by NaCl, followed enhanced production of β-carotene, lutein, and quercetin 3-β-d-glucoside. At the highest NaCl level (150 mM NaCl), quercetin 3-β-d-glucoside synthesis came at the expense of reduced β-carotene and lutein, while salt stress treatment affected leaf antioxidant activities to a great extent relative to the control. Our data suggest that the potential antioxidant properties of carotenoids and flavonoids and their related key genes may be efficiently involved in the restriction of salt-induced oxidative damages.  相似文献   

16.

Main conclusion

High levels of β-carotene, lycopene, and the rare γ-carotene occur predominantly lipid-dissolved in the chromoplasts of peach palm fruits. First proof of their absorption from these fruits is reported. The structural diversity, the physical deposition state in planta, and the human bioavailability of carotenoids from the edible fruits of diverse orange and yellow-colored peach palm (Bactris gasipaes Kunth) varieties were investigated. HPLC–PDA–MSn revealed a broad range of carotenes, reaching total carotenoid levels from 0.7 to 13.9 mg/100 g FW. Besides the predominant (all-E)-β-carotene (0.4–5.4 mg/100 g FW), two (Z)-isomers of γ-carotene (0.1–3.9 mg/100 g FW), and one (Z)-lycopene isomer (0.04–0.83 mg/100 g FW) prevailed. Approximately 89–94 % of total carotenoid content pertained to provitamin A carotenoids with retinol activity equivalents ranging from 37 to 609 µg/100 g FW. The physical deposition state of these carotenoids in planta was investigated using light, transmission electron, and scanning electron microscopy. The plastids found in both orange and yellow-colored fruit mesocarps were amylo-chromoplasts of the globular type, containing carotenoids predominantly in a lipid-dissolved form. The hypothesis of lipid-dissolved carotenoids was supported by simple solubility estimations based on carotenoid and lipid contents of the fruit mesocarp. In our study, we report first results on the human bioavailability of γ-carotene, β-carotene, and lycopene from peach palm fruit, particularly proving the post-prandial absorption of the rarely occurring γ-carotene. Since the physical state of carotenoid deposition has been shown to be decisive for carotenoid bioavailability, lipid-dissolved carotenoids in peach palm fruits are expected to be highly bioavailable, however, further studies are required.  相似文献   

17.
The oleaginous red yeast Rhodotorula glutinis produces carotenoid pigments, especially torularhodin and β-carotene, in significant amounts. We have analyzed in detail carotenoid and lipid biosynthesis in a torularhodin-producing strain of R. glutinis cultivated at different carbon:nitrogen (C/N) ratios (20:1, 50:1, 70:1, and 100:1). When the strain was cultivated in media with low C/N ratios (20:1 and 50:1), glucose was completely utilized and carotenoid formation was stimulated. Maximum pigment production reached 12.9 mg/L of medium and 2.3 mg/g of biomass at the C/N ratio of 20:1. It was noted that β-carotene synthesis was prominent when glucose was present in the medium. However, glucose exhaustion in the media at C/N ratios of 20:1 and 50:1 was closely accompanied by the predominant formation of torularhodin. The growth of R. glutinis in media with C/N ratios of 70:1 and 100:1 favored lipid accumulation in the cells but carotenoid biosynthesis was reduced. In addition, glucose consumption was linked to a rapid decrease in oleic acid levels in the total intracellular lipids. The kinetic analysis clearly indicated a correlation between oleic acid levels in total lipids and torularhodin accumulation in the cells. The results may suggest that acetyl-CoA formed from oleic acid degradation is metabolized through the mevalonate/isoprenoid/carotenoid pathways directly to torularhodin.  相似文献   

18.
Of the six carotenoids identified in the cyanobacterium Aphanocapsa, β-carotene, zeaxanthin, echinenone and myxoxanthophyll are the major pigments, whilst β-cryptoxanthin and 3-hydroxy-4-keto-β-carotene are present only in trace amounts. With the exception of zeaxanthin, the other xanthophylls could be formed in vitro from [14C]phytoene in high yields, especially β-cryptoxanthin and 3-hydroxy-4-keto-β-carotene. In a time course experiment of xanthopyll biosynthesis the flow of radioactivity from [14C]phytoene was followed through the pools of phytofluene, lycopene, and β-carotene. The reaction sequence from phytoene to xanthophylls is sensitive in vitro to both difunone, an inhibitor of carotene desaturation, and CPTA, an inhibitor of cyclization.  相似文献   

19.
High lipid content in microalgae is an essential parameter for adopting of microalgal biomass as a feedstock for biodiesel. Mutation is one approach to obtain desired algal strain with high lipid production. In this study, a mutant strain of Chlorella pyrenoidosa was isolated using 1.5?×?1015 ions cm?2 s?1 of N+ ion beam implantation technique, which has been widely used in mutagenesis of agricultural crops. N+ implantation slightly improved the growth of the mutant over the corresponding wild strain with significant increase in lipid content (32.4 % higher than the wild strain), which resulted in significant increase in lipid productivity by 35 %. In addition, ion implantation mutagenesis of C. pyrenoidosa resulted in 21.4 % decrease in total saturated fatty acids (SFAs) compared to the wild type, with a noticeable increase in polyunsaturated fatty acids (PUFAs). The increase in PUFAs was due mainly to stimulation of hexadecadienoic acid (C16:2) and octadecadienoic acid (C18:2) production. However, the SFA content of wild and mutant strains was 31.7 and 24.9 % of total fatty acids, respectively, highlighting the oxidative stability of biodiesel produced by both strains according to the European standards. Cultivation of C. pyrenoidosa mutant in selenite enrichment medium for five successive cultivation experiments showed insignificant changes in biomass productivity, lipid content, and lipid productivity alongside the study period, which confirms the genetic stability of the produced mutant. The present study confirmed the feasibility of generation of microalgae mutants with significant high lipid production using ion beam implantation.  相似文献   

20.
A family of carotenoid cleavage dioxygenases (CCDs) produces diverse apocarotenoid compounds via the oxidative cleavage of carotenoids as substrates. Their types are highly dependent on the action of the CCD family to cleave the double bonds at the specific position on the carotenoids. Here, we report in vivo function of the AtCCD4 gene, one of the nine members of the Arabidopsis CCD gene family, in transgenic rice plants. Using two independent single-copy rice lines overexpressing the AtCCD4 transgene, the targeted analysis for carotenoids and apocarotenoids showed the markedly lowered levels of β-carotene (74 %) and lutein (72 %) along with the changed levels of two β-carotene (C40) cleavage products, a two-fold increase of β-ionone (C13) and de novo generation of β-cyclocitral (C10) at lower levels, compared with non-transgenic rice plants. It suggests that β-carotene could be the principal substrate being cleaved at 9–10 (9′–10′) for β-ionone and 7–8 (7′–8′) positions for β-cyclocitral by AtCCD4. This study is in planta report on the generation of apocarotenal volatiles from carotenoid substrates via cleavage by AtCCD4. We further verified that the production of these volatiles was due to the action of exogenous AtCCD4 and not the expression of endogenous rice CCD genes (OsCCD1, 4a, and 4b).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号