首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Most patients with bacterial infections suffer from fever and various pains that require complex treatments with antibiotics, antipyretics, and analgaesics. The most common drugs used to relieve these symptoms are non-steroidal anti-inflammatory drugs (NSAIDs), which are not typically considered antibiotics. Here, we investigate the effects of NSAIDs on bacterial susceptibility to antibiotics and the modulation of bacterial efflux pumps.

Methodology

The activity of 12 NSAID active substances, paracetamol (acetaminophen), and eight relevant medicinal products was analyzed with or without pump inhibitors against 89 strains of Gram-negative rods by determining the MICs. Furthermore, the effects of NSAIDs on the susceptibility of clinical strains to antimicrobial agents with or without PAβN (Phe-Arg-β-naphtylamide) were measured.

Results

The MICs of diclofenac, mefenamic acid, ibuprofen, and naproxen, in the presence of PAβN, were significantly (≥4-fold) reduced, decreasing to 25–1600 mg/L, against the majority of the studied strains. In the case of acetylsalicylic acid only for 5 and 7 out of 12 strains of P. mirabilis and E. coli, respectively, a 4-fold increase in susceptibility in the presence of PAβN was observed. The presence of Aspirin resulted in a 4-fold increase in the MIC of ofloxacin against only two strains of E. coli among 48 tested clinical strains, which included species such as E. coli, K. pneumoniae, P. aeruginosa, and S. maltophilia. Besides, the medicinal products containing the following NSAIDs, diclofenac, mefenamic acid, ibuprofen, and naproxen, did not cause the decrease of clinical strains’ susceptibility to antibiotics.

Conclusions

The effects of PAβN on the susceptibility of bacteria to NSAIDs indicate that some NSAIDs are substrates for efflux pumps in Gram-negative rods. Morever, Aspirin probably induced efflux-mediated resistance to fluoroquinolones in a few E. coli strains.  相似文献   

2.

Background

Previous studies showed that Staphylococcus aureus and Candida albicans interact synergistically in dual species biofilms resulting in enhanced mortality in animal models.

Methodology/Principal Findings

The aim of the current study was to test possible candidate molecules which might mediate this synergistic interaction in an in vitro model of mixed biofilms, such as farnesol, tyrosol and prostaglandin (PG) E2. In mono-microbial and dual biofilms of C.albicans wild type strains PGE2 levels between 25 and 250 pg/mL were measured. Similar concentrations of purified PGE2 significantly enhanced S.aureus biofilm formation in a mode comparable to that observed in dual species biofilms. Supernatants of the null mutant deficient in PGE2 production did not stimulate the proliferation of S.aureus and the addition of the cyclooxygenase inhibitor indomethacin blocked the S.aureus biofilm formation in a dose-dependent manner. Additionally, S. aureus biofilm formation was boosted by low and inhibited by high farnesol concentrations. Supernatants of the farnesol-deficient C. albicans ATCC10231 strain significantly enhanced the biofilm formation of S. aureus but at a lower level than the farnesol producer SC5314. However, C. albicans ATCC10231 also produced PGE2 but amounts were significantly lower compared to SC5314.

Conclusion/Significance

In conclision, we identified C. albicans PGE2 as a key molecule stimulating the growth and biofilm formation of S. aureus in dual S. aureus/C. albicans biofilms, although C. albicans derived farnesol, but not tyrosol, may also contribute to this effect but to a lesser extent.  相似文献   

3.

Background

Beta-defensins (hBDs) provide antimicrobial and chemotactic defense against bacterial, viral and fungal infections. Human β-defensin-2 (hBD-2) acts against gram-negative bacteria and chemoattracts immature dendritic cells, thus regulating innate and adaptive immunity. Immunosuppression due to hyperglycemia underlies chronic infection in Type 2 diabetes. Hyperglycemia also elevates production of dicarbonyls methylgloxal (MGO) and glyoxal (GO).

Methods

The effect of dicarbonyl on defensin peptide structure was tested by exposing recombinant hBD-2 (rhBD-2) to MGO or GO with subsequent analysis by MALDI-TOF MS and LC/MS/MS. Antimicrobial function of untreated rhBD-2 vs. rhBD-2 exposed to dicarbonyl against strains of both gram-negative and gram-positive bacteria in culture was determined by radial diffusion assay. The effect of dicarbonyl on rhBD-2 chemotactic function was determined by chemotaxis assay in CEM-SS cells.

Results

MGO or GO in vitro irreversibly adducts to the rhBD-2 peptide, and significantly reduces antimicrobial and chemotactic functions. Adducts derive from two arginine residues, Arg22 and Arg23 near the C-terminus, and the N-terminal glycine (Gly1). We show by radial diffusion testing on gram-negative E. coli and P. aeruginosa, and gram-positive S. aureus, and a chemotaxis assay for CEM-SS cells, that antimicrobial activity and chemotactic function of rhBD-2 are significantly reduced by MGO.

Conclusions

Dicarbonyl modification of cationic antimicrobial peptides represents a potential link between hyperglycemia and the clinical manifestation of increased susceptibility to infection, protracted wound healing, and chronic inflammation in undiagnosed and uncontrolled Type 2 diabetes.  相似文献   

4.

Objective

The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR) Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source.

Methods

The prevalence of AMR E. coli was determined in 113 surface water samples obtained from 30 different water bodies, and in 33 wastewater samples obtained at five health care institutions (HCIs), seven municipal wastewater treatment plants (mWWTPs), and an airport WWTP. Overall, 846 surface water and 313 wastewater E. coli isolates were analysed with respect to susceptibility to eight antimicrobials (representing seven different classes): ampicillin, cefotaxime, tetracycline, ciprofloxacin, streptomycin, sulfamethoxazole, trimethoprim, and chloramphenicol.

Results

Among surface water isolates, 26% were resistant to at least one class of antimicrobials, and 11% were multidrug-resistant (MDR). In wastewater, the proportions of AMR/MDR E. coli were 76%/62% at HCIs, 69%/19% at the airport WWTP, and 37%/27% and 31%/20% in mWWTP influents and effluents, respectively. Median concentrations of MDR E. coli were 2.2×102, 4.0×104, 1.8×107, and 4.1×107 cfu/l in surface water, WWTP effluents, WWTP influents and HCI wastewater, respectively. The different resistance types occurred with similar frequencies among E. coli from surface water and E. coli from municipal wastewater. By contrast, among E. coli from HCI wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water. Most cefotaxime-resistant E. coliisolates produced ESBL. In two of the mWWTP, ESBL-producing variants were detected that were identical with respect to phylogenetic group, sequence type, AMR-profile, and ESBL-genotype to variants from HCI wastewater discharged onto the same sewer and sampled on the same day (A1/ST23/CTX-M-1, B23/ST131/CTX-M-15, D2/ST405/CTX-M-15).

Conclusion

In conclusion, our data show that MDR E. coli are omnipresent in Dutch surface water, and indicate that municipal wastewater significantly contributes to this occurrence.  相似文献   

5.
6.

Background

Accurate local prevalence of microbial diseases and microbial resistance data are vital for optimal treatment of patients. However, there are few reports of these data from developing countries, especially from sub-Saharan Africa. The status of Aga Khan University Hospital Nairobi as an internationally accredited hospital and a laboratory with an electronic medical record system has made it possible to analyze local prevalence and antimicrobial susceptibility data and compare it with other published data.

Methods

We have analyzed the spectrum of microbial agents and resistance patterns seen at a 300 bed tertiary private teaching hospital in Kenya using microbial identity and susceptibility data captured in hospital and laboratory electronic records between 2010 and 2014.

Results

For blood isolates, we used culture collection within the first three days of hospitalization as a surrogate for community onset, and within that group, Escherichia coli was the most common, followed by Staphylococcus aureus. In contrast, Candida spp. and Klebsiella pneumoniae were the most common hospital onset causes of bloodstream infection. Antimicrobial resistance rates for the most commonly isolated Gram negative organisms was higher than many recent reports from Europe and North America. In contrast, Gram positive resistance rates were quite low, with 94% of S. aureus being susceptible to oxacillin and only rare isolates of vancomycin-resistant enterococci.

Conclusions

The current report demonstrates high rates of antimicrobial resistance in Gram negative organisms, even in outpatients with urinary tract infections. On the other hand, rates of resistance in Gram positive organisms, notably S. aureus, are remarkably low. A better understanding of the reasons for these trends may contribute to ongoing efforts to combat antimicrobial resistance globally.  相似文献   

7.

Background

Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor.

Methods

The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied.

Results

The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only.

Conclusions

This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which challenges the traditional diagnostics of E. coli infections.  相似文献   

8.

Background

The intestinal microbiota is increasingly linked to the pathogenesis of chronic enteropathies (CE) in dogs. While imbalances in duodenal and fecal microbial communities have been associated with mucosal inflammation, relatively little is known about alterations in mucosal bacteria seen with CE involving the ileum and colon.

Aim

To investigate the composition and spatial organization of mucosal microbiota in dogs with CE and controls.

Methods

Tissue sections from endoscopic biopsies of the ileum and colon from 19 dogs with inflammatory bowel disease (IBD), 6 dogs with granulomatous colitis (GC), 12 dogs with intestinal neoplasia, and 15 controls were studied by fluorescence in situ hybridization (FISH) on a quantifiable basis.

Results

The ileal and colonic mucosa of healthy dogs and dogs with CE is predominantly colonized by bacteria localized to free and adherent mucus compartments. CE dogs harbored more (P < 0.05) mucosal bacteria belonging to the Clostridium-coccoides/Eubacterium rectale group, Bacteroides, Enterobacteriaceae, and Escherichia coli versus controls. Within the CE group, IBD dogs had increased (P < 0.05) Enterobacteriaceae and E. coli bacteria attached onto surface epithelia or invading within the intestinal mucosa. Bacterial invasion with E. coli was observed in the ileal and colonic mucosa of dogs with GC (P < 0.05). Dogs with intestinal neoplasia had increased (P < 0.05) adherent (total bacteria, Enterobacteriaceae, E. coli) and invasive (Enterobacteriaceae, E. coli, and Bacteroides) bacteria in biopsy specimens. Increased numbers of total bacteria adherent to the colonic mucosa were associated with clinical disease severity in IBD dogs (P < 0.05).

Conclusion

Pathogenic events in canine CE are associated with different populations of the ileal and colonic mucosal microbiota.  相似文献   

9.

Objectives

Feed efficiency and its digestive component, digestive efficiency, are key factors in the environmental impact and economic output of poultry production. The interaction between the host and intestinal microbiota has a crucial role in the determination of the ability of the bird to digest its food and to the birds’ feed efficiency. We therefore investigated the phenotypic and genetic relationships between birds’ efficiency and the composition of the cecal microbiota in a F2 cross between broiler lines divergently selected for their high or low digestive efficiency.

Methods

Analyses were performed on 144 birds with extreme feed efficiency values at 3 weeks, with feed conversion values of 1.41±0.05 and 2.02±0.04 in the efficient and non-efficient groups, respectively. The total numbers of Lactobacillus, L. salivarius, L. crispatus, C. coccoides, C. leptum and E. coli per gram of cecal content were measured.

Results

The two groups mainly differed in larger counts of Lactobacillus, L. salivarius and E. coli in less efficient birds. The equilibrium between bacterial groups was also affected, efficient birds showing higher C. leptum, C. coccoides and L. salivarius to E. coli ratios. The heritability of the composition of microbiota was also estimated and L. crispatus, C. leptum, and C. coccoides to E. coli ratios were moderately but significantly heritable (0.16 to 0.24). The coefficient of fecal digestive use of dry matter was genetically and positively correlated with L. crispatus, C. leptum, C. coccoides (0.50 to 0.76) and negatively with E. coli (-0.66). Lipid digestibility was negatively correlated with E. coli (-0.64), and AMEn positively correlated with C. coccoides and with the C. coccoides to Lactobacillus ratio (0.48 to 0.64). We also detected 14 Quantitative Trait Loci (QTL) for microbiota on the host genome, mostly on C. leptum and Lactobacillus. The QTL for C. leptum on GGA6 was close to genome-wide significance. This region mainly includes genes involved in anti-inflammatory responses and in the motility of the gastrointestinal tract.  相似文献   

10.

Background

Inhibition and eradication of Staphylococcus aureus biofilms with conventional antibiotic is difficult, and the treatment is further complicated by the rise of antibiotic resistance among staphylococci. Consequently, there is a need for novel antimicrobials that can treat biofilm-related infections and decrease antibiotics burden. Natural compounds such as eugenol with anti-microbial properties are attractive agents that could reduce the use of conventional antibiotics. In this study we evaluated the effect of eugenol on MRSA and MSSA biofilms in vitro and bacterial colonization in vivo.

Methods and Results

Effect of eugenol on in vitro biofilm and in vivo colonization were studied using microtiter plate assay and otitis media-rat model respectively. The architecture of in vitro biofilms and in vivo colonization of bacteria was viewed with SEM. Real-time RT-PCR was used to study gene expression. Check board method was used to study the synergistic effects of eugenol and carvacrol on established biofilms. Eugenol significantly inhibited biofilms growth of MRSA and MSSA in vitro in a concentration-dependent manner. Eugenol at MIC or 2×MIC effectively eradicated the pre-established biofilms of MRSA and MSSA clinical strains. In vivo, sub-MIC of eugenol significantly decreased 88% S. aureus colonization in rat middle ear. Eugenol was observed to damage the cell-membrane and cause a leakage of the cell contents. At sub-inhibitory concentration, it decreases the expression of biofilm-and enterotoxin-related genes. Eugenol showed a synergistic effect with carvacrol on the eradication of pre-established biofilms.

Conclusion/Major Finding

This study demonstrated that eugenol exhibits notable activity against MRSA and MSSA clinical strains biofilms. Eugenol inhibited biofilm formation, disrupted the cell-to-cell connections, detached the existing biofilms, and killed the bacteria in biofilms of both MRSA and MSSA with equal effectiveness. Therefore, eugenol may be used to control or eradicate S. aureus biofilm-related infections.  相似文献   

11.

Background

Clostridium difficile is the leading cause of antibiotic-associated diarrhoea and pseudo membranous colitis in the developed world. The aim of this study was to explore whether Photodynamic Antimicrobial Chemotherapy (PACT) could be used as a novel approach to treating C. difficile infections.

Methods

PACT utilises the ability of light-activated photosensitisers (PS) to produce reactive oxygen species (ROS) such as free radical species and singlet oxygen, which are lethal to cells. We screened thirteen PS against C. difficile planktonic cells, biofilm and germinating spores in vitro, and cytotoxicity of effective compounds was tested on the colorectal adenocarcinoma cell-line HT-29.

Results

Three PS were able to kill 99.9% of bacteria in both aerobic and anaerobic conditions, both in the planktonic state and in a biofilm, after exposure to red laser light (0.2 J/cm2) without harming model colon cells. The applicability of PACT to eradicate C. difficile germinative spores indirectly was also shown, by first inducing germination with the bile salt taurocholate, followed by PACT.

Conclusion

This innovative and simple approach offers the prospect of a new antimicrobial therapy using light to treat C. difficile infection of the colon.  相似文献   

12.

Background & Aims

The extent of entry of multidrug-resistant Escherichia coli from the community into the hospital and subsequent clonal spread amongst patients is unclear. To investigate the extent and direction of clonal spread of these bacteria within a large teaching hospital, we prospectively genotyped multidrug-resistant E. coli obtained from community- and hospital associated patient groups and compared the distribution of diverse genetic markers.

Methods

A total of 222 E. coli, classified as multi-drug resistant according to national guidelines, were retrieved from both screening (n = 184) and non-screening clinical cultures (n = 38) from outpatients and patients hospitalized for various periods. All isolates were routinely genotyped using an amplified fragment length polymorphism (AFLP) assay and real-time PCR for CTX-M genes. Multi-locus sequence typing was additionally performed to confirm clusters. Based on demographics, patients were categorized into two groups: patients that were not hospitalized or less than 72 hours at time of strain isolation (group I) and patients that were hospitalized for at least 72 hours (group II).

Results

Genotyping showed that most multi-drug resistant E. coli either had unique AFLP profiles or grouped in small clusters of maximally 8 isolates. We identified one large ST131 clade comprising 31% of all isolates, containing several AFLP clusters with similar profiles. Although different AFLP clusters were found in the two patient groups, overall genetic heterogeneity was similar (35% vs 28% of isolates containing unique AFLP profiles, respectively). In addition, similar distributions of CTX-M groups, including CTX-M 15 (40% and 44% of isolates in group I and II, respectively) and ST131 (32% and 30% of isolates, respectively) were found.

Conclusion

We conclude that multi-drug resistant E. coli from the CTX-M 15 associated lineage ST131 are widespread amongst both community- and hospital associated patient groups, with similar genetic diversity and similar distributions of genetic markers.  相似文献   

13.
Hospital acquired pneumonia (HAP) is often fatal in older patients. The mouth is the main reservoir of infection and studies have suggested that oral hygiene interventions may prevent HAP. The aim of this study was to investigate associations between HAP and preceding a) heavy dental plaque and b) oral carriage of potential respiratory pathogens in older patients with lower limb fracture to determine the target for intervention studies.

Methods

We obtained a time series of tongue/throat swabs from 90 patients with lower limb fracture, aged 65-101 in a general hospital in the North East of England between April 2009-July 2010. We used novel real-time multiplex PCR assays to detect S. aureus, MRSA, E. coli, P. aeruginosa, S. pneumoniae, H. influenza and Acinetobacter spp. We collected data on dental/denture plaque (modified Quigley-Hein index) and outcomes of clinician-diagnosed HAP.

Results

The crude incidence of HAP was 10% (n = 90), with mortality of 80% at 90 days post discharge. 50% of cases occurred within the first 25 days. HAP was not associated with being dentate, tooth number, or heavy dental/denture plaque. HAP was associated with prior oral carriage with E. coli/S. aureus/P.aeruginosa/MRSA (p = 0.002, OR 9.48 95% CI 2.28-38.78). The incidence of HAP in those with carriage was 35% (4% without), with relative risk 6.44 (95% CI 2.04-20.34, p = 0.002). HAP was associated with increased length of stay (Fishers exact test, p=0.01), with mean 30 excess days (range -11.5-115). Target organisms were first detected within 72 hours of admission in 90% participants, but HAP was significantly associated with S. aureus/MRSA/P. aeruginosa/E. coli being detected at days 5 (OR 4.39, 95%CI1.73-11.16) or 14 (OR 6.69, 95%CI 2.40-18.60).

Conclusions

Patients with lower limb fracture who were colonised orally with E. coli/ S. aureus/MRSA/P. aeruginosa after 5 days in hospital were at significantly greater risk of HAP (p = 0.002).  相似文献   

14.

Background

Bloodstream infections (BSI) are frequent and cause high case-fatality rates. Urgent antibiotic treatment can save patients’ lives, but antibiotic resistance can render antibiotic therapy futile. This study is the first to collect epidemiological data on BSI from Unguja, Zanzibar.

Methods

Clinical data and blood for culturing and susceptibility testing of isolated microbes were obtained from 469 consecutively enrolled neonates, children and adults presenting with signs of systemic infections at Mnazi Mmoja Hospital (MMH), Zanzibar.

Results

Pathogenic bacteria were recovered from the blood of 14% of the patients (66/469). The most frequently isolated microbes were Klebsiella pneumoniae, Escherichia coli, Acinetobacter spp. and Staphylococcus aureus. Infections were community-acquired in 56 patients (85%) and hospital-acquired in 8 (12%) (data missing for 2 patients). BSI caused by extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae (E. coli, K. pneumoniae) was found in 5 cases, of which 3 were community-acquired and 2 hospital-acquired. Three of these patients died. Six of 7 Salmonella Typhi isolates were multidrug resistant. Streptococcus pneumoniae was found in one patient only.

Conclusions

This is the first report of ESBL-producing bacteria causing BSI from the Zanzibar archipelago. Our finding of community-acquired BSI caused by ESBL-producing bacteria is alarming, as it implies that these difficult-to-treat bacteria have already spread in the society. In the local setting these infections are virtually impossible to cure. The findings call for increased awareness of rational antibiotic use, infection control and surveillance to counteract the problem of emerging antimicrobial resistance.  相似文献   

15.

Background

Potassium ion homeostasis plays an important role in regulating membrane potential and therefore resistance to cations, antibiotics and chemotherapeutic agents in Schizosaccharomyces pombe and other yeasts. However, the precise relationship between drug resistance in S. pombe and external potassium concentrations (particularly in its natural habitats) remains unclear. S. pombe can tolerate a wide range of external potassium concentrations which in turn affect plasma membrane polarization. We thus hypothesized that high external potassium concentrations suppress the sensitivity of this yeast to various drugs.

Methods

We have investigated the effect of external KCl concentrations on the sensitivity of S. pombe cells to a wide range of antibiotics, antimicrobial agents and chemotherapeutic drugs. We employed survival assays, immunoblotting and microscopy for these studies.

Results

We demonstrate that KCl, and to a lesser extent NaCl and RbCl can suppress the sensitivity of S. pombe to a wide range of antibiotics. Ammonium chloride and potassium hydrogen sulphate also suppressed drug sensitivity. This effect appears to depend in part on changes to membrane polarization and membrane transport proteins. Interestingly, we have found little relationship between the suppressive effect of KCl on sensitivity and the structure, polarity or solubility of the various compounds investigated.

Conclusions

High concentrations of external potassium and other cations suppress sensitivity to a wide range of drugs in S. pombe. Potassium-rich environments may thus provide S. pombe a competitive advantage in nature. Modulating potassium ion homeostasis may sensitize pathogenic fungi to antifungal agents.  相似文献   

16.

Background

Previously we found that E. coli O157:H7 inoculated into ligated pig intestine formed attaching and effacing (AE) lesions in some pigs but not in others. The present study evaluated changes in the microbial community and in virulence gene expression in E. coli O157:H7 in ligated pig intestine in which the bacteria formed AE lesions or failed to form AE lesions.

Methodology/Principal Findings

The intestinal microbiota was assessed by RNA-based denaturing gradient gel electrophoresis (DGGE) analysis. The DGGE banding patterns showed distinct differences involving two bands which had increased intensity specifically in AE-negative pigs (AE- bands) and several bands which were more abundant in AE-positive pigs. Sequence analysis revealed that the two AE- bands belonged to Veillonella caviae, a species with probiotic properties, and Bacteroides sp. Concurrent with the differences in microbiota, gene expression analysis by quantitative PCR showed that, compared with AE negative pigs, E. coli O157:H7 in AE positive pigs had upregulated genes for putative adhesins, non-LEE encoded nleA and quorum sensing qseF, acid resistance gene ureD, and genes from the locus of enterocyte effacement (LEE).

Conclusions/Significance

The present study demonstrated that AE-positive pigs had reduced activities or populations of Veillonella caviae and Bacterioides sp. compared with AE-negative pigs. Further studies are required to understand how the microbiota was changed and the role of these organisms in the control of E. coli O157:H7.  相似文献   

17.

Background

EspP (E. coli secreted serine protease, large plasmid encoded) is an extracellular serine protease produced by enterohemorrhagic E. coli (EHEC) O157:H7, a causative agent of diarrhea-associated Hemolytic Uremic Syndrome (D+HUS). The mechanism by which EHEC induces D+HUS has not been fully elucidated.

Objectives

We investigated the effects of EspP on clot formation and lysis in human blood.

Methods

Human whole blood and plasma were incubated with EspPWT at various concentrations and sampled at various time points. Thrombin time (TT), prothrombin time (PT), and activated partial thromboplastin time (aPTT), coagulation factor activities, and thrombelastgraphy (TEG) were measured.

Results and Conclusions

Human whole blood or plasma incubated with EspPWT was found to have prolonged PT, aPTT, and TT. Furthermore, human whole blood or plasma incubated with EspPWT had reduced activities of coagulation factors V, VII, VIII, and XII, as well as prothrombin. EspP did not alter the activities of coagulation factors IX, X, or XI. When analyzed by whole blood TEG, EspP decreased the maximum amplitude of the clot, and increased the clot lysis. Our results indicate that EspP alters hemostasis in vitro by decreasing the activities of coagulation factors V, VII, VIII, and XII, and of prothrombin, by reducing the clot strength and accelerating fibrinolysis, and provide further evidence of a functional role for this protease in the virulence of EHEC and the development of D+HUS.  相似文献   

18.

Background

Staphylococcus aureus is one predominant cause of skin and soft-tissue infections (SSTIs), but little information exists regarding the characterization of S. aureus from non-native patients with SSTIs in China.

Methods

In this study, we enrolled 52 non-native patients with S. aureus SSTIs, and 65 native control patients with S. aureus SSTIs in Shanghai. 52 and 65 S. aureus isolates were collected from both groups, respectively. S. aureus isolates were characterized by antimicrobial susceptibility testing, toxin gene detection, and molecular typing with sequence type, spa type, agr group and SCCmec type.

Results

Methicillin-resistant S. aureus (MRSA) was detected in 8 non-native patients and 14 native patients with SSTIs. Overall, antimicrobial susceptibilities of S. aureus isolated from non-native patients were found higher than those from native patients. CC59 (ST338 and ST59) was found in a total of 14 isolates (4 from non-native patients; 10 from native patients), 9 of which were carrying lukS/F-PV (3 from non-native patients; 6 from native patients). ST7 was found in 12 isolates and all 12 isolates were found in native patients. The livestock-associated clone ST398 was found in 11 isolates (6 from non-native patients; 5 from native patients), and 5 ST398 lukS/F-PV-positive methicillin-susceptible S. aureus (MSSA) were all discovered among non-native patients. The molecular epidemiology of S. aureus isolated from non-native patients was quite different from those from native patients. lukS/F-PV was more frequent in isolates originating from non-native patients with SSTIs compared to native patients (31 vs. 7, P <0.0001).

Conclusions

CC59 was the most common clonal complex among patients with SSTIs in Shanghai. The other most common sequence types were ST7 and Livestock ST398. The molecular epidemiology of S. aureus isolated from non-native patients was quite different from those from native patients. S. aureus isolated from non-native patients was more likely to carry lukS/F-PV.  相似文献   

19.

Background

The optimal therapy for infections caused by Stenotrophomonas maltophilia (S. maltophilia) has not yet been established. The objective of our study was to evaluate the efficacy of trimethoprim/sulfamethoxazole (SXT), minocycline, tigecycline, moxifloxacin, levofloxacin, ticarcillin-clavulanate, polymyxin E, chloramphenicol, and ceftazidime against clinical isolated S. maltophilia strains by susceptibility testing and carried out time-kill experiments in potential antimicrobials.

Methods

The agar dilution method was used to test susceptibility of nine candidate antimicrobials, and time-killing experiments were carried out to evaluate the efficacy of SXT, minocycline, tigecycline, moxifloxacin, levofloxacin, and ceftazidime both alone and in combinations at clinically relevant antimicrobial concentrations.

Results

The susceptibility to SXT, minocycline, tigecycline, moxifloxacin, levofloxacin, ticarcillin-clavulanate, chloramphenicol, polymyxin E, and ceftazidime were 93.8%, 95.0%, 83.8%, 80.0%, 76.3%, 76.3%, 37.5%, 22.5%, and 20.0% against 80 clinical consecutively isolated strains, respectively. Minocycline and tigecycline showed consistent active against 22 SXT-resistant strains. However, resistance rates were high in the remaining antimicrobial agents against SXT-resistant strains. In time-kill experiments, there were no synergisms in most drug combinations in time-kill experiments. SXT plus moxifloxacin displayed synergism when strains with low moxifloxacin MICs. Moxifloxacin plus Minocycline and moxifloxacin plus tigecycline displayed synergism in few strains. No antagonisms were found in these combinations. Overall, compared with single drug, the drug combinations demonstrated lower bacterial concentrations. Some combinations showed bactericidal activity.

Conclusions

In S. maltophilia infections, susceptibility testing suggests that minocycline and SXT may be considered first-line therapeutic choices while tigecycline, moxifloxacin, levofloxacin, and ticarcillin-clavulanate may serve as second-line choices. Ceftazidime, colistin, and chloramphenicol show poor active against S. maltophilia. However, monotherapy is inadequate in infection management, especially in case of immunocompromised patients. Combination therapy, especially SXT plus moxifloxacin, may benefit than monotherapy in inhibiting or killing S. maltophilia.  相似文献   

20.

Introduction

Low Clostridium leptum levels are a risk factor for the development of asthma. C. leptum deficiency exacerbates asthma; however, the impact of early-life C. leptum exposure on cesarean-delivered mice remains unclear. This study is to determine the effects of early-life C. leptum exposure on asthma development in infant mice.

Methods

We exposed infant mice to C. leptum (fed-CL) and then induced asthma using the allergen ovalbumin (OVA).

Results

Fed-CL increased regulatory T (Treg) cells in cesarean-delivered mice compared with vaginally delivered mice. Compared with OVA-exposed mice, mice exposed to C. leptum + OVA did not develop the typical asthma phenotype, which includes airway hyper-responsiveness, cell infiltration, and T helper cell subset (Th1, Th2, Th9, Th17) inflammation. Early-life C. leptum exposure induced an immunosuppressive environment in the lung concurrent with increased Treg cells, resulting in the inhibition of Th1, Th2, Th9, and Th17 cell responses.

Conclusion

These findings demonstrate a mechanism whereby C. leptum exposure modulates adaptive immunity and leads to failure to develop asthma upon OVA sensitization later in life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号