首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Genetic variation at allozyme and mitochondrialDNA loci was investigated in the Australianlungfish, Neoceratodus forsteri Krefft1870. Tissue samples for genetic analysis weretaken non-lethally from 278 individualsrepresenting two spatially distinct endemicpopulations (Mary and Burnett rivers), as wellas one population thought to be derived from ananthropogenic translocation in the 1890's(Brisbane river). Two of 24 allozyme lociresolved from muscle tissue were polymorphic.Mitochondrial DNA nucleotide sequence diversityestimated across 2,235 base pairs in each of 40individuals ranged between 0.000423 and0.001470 per river. Low genetic variation atallozyme and mitochondrial loci could beattributed to population bottlenecks, possiblyinduced by Pleistocene aridity. Limited geneticdifferentiation was detected among rivers usingnuclear and mitochondrial markers suggestingthat admixture may have occurred between theendemic Mary and Burnett populations duringperiods of low sea level when the drainages mayhave converged before reaching the ocean.Genetic data was consistent with theexplanation that lungfish were introduced tothe Brisbane river from the Mary river. Furtherresearch using more variable genetic loci isneeded before the conservation status ofpopulations can be determined, particularly asanthropogenic demands on lungfish habitat areincreasing. In the interim we recommend amanagement strategy aimed at conservingexisting genetic variation within and betweenrivers.  相似文献   

2.
The genetic impact of barriers and Pleistocene glaciations on high latitude resident species has not been widely investigated. The Clark’s nutcracker is an endemic North American corvid closely associated with Pinus-dominated forests. The nutcracker’s encompasses known barriers to dispersal for other species, and glaciated and unglaciated areas. Clark’s nutcrackers also irruptively disperse long distances in search of pine seed crops, creating the potential for gene flow among populations. Using the highly variable mitochondrial DNA control region, seven microsatellite loci, and species distribution modeling, we examined the effects of glaciations and dispersal barriers on population genetic patterns and population structure of nutcrackers. We sequenced 900 bp of mitochondrial control region for 169 individuals from 15 populations and analysed seven polymorphic microsatellite loci for 13 populations across the Clark’s nutcracker range. We used species distribution modeling and a range of phylogeographic analyses to examine evolutionary history. Clark’s nutcracker populations are not highly differentiated throughout their range, suggesting high levels of gene flow among populations, though we did find some evidence of isolation by distance and peripheral isolation. Our analyses suggested expansion from a single refugium after the last glacial maximum, but patterns of genetic diversity and paleodistribution modeling of suitable habitat were inconclusive as to the location of this refugium. Potential barriers to dispersal (e.g. mountain ranges) do not appear to restrict gene flow in Clark’s nutcracker, and postglacial expansion likely occurred quickly from a single refugium located south of the ice sheets.  相似文献   

3.
The Australian lungfish, Neoceratodus forsteri, exists as remnant natural populations in two rivers of south-east Queensland, Australia, and several translocated populations. Lungfish habitats have been impacted by agriculture and forestry, alien plants and fish and by river impoundment and regulation of flows. The species has been listed as vulnerable under Australian Commonwealth legislation. A proposal to construct Traveston Crossing Dam on the free-flowing main channel of the upper Mary River could seriously threaten the lungfish. The dam can be stopped by Commonwealth legislation if important populations of lungfish in the Mary River are likely to be significantly impacted by the new dam. This paper assembles evidence that impoundment of the Mary River and regulation of river flows are likely to decrease and fragment important lungfish populations, disrupt the breeding cycle, reduce juvenile recruitment, and isolate and decrease habitat availability/quality to such an extent that the species is likely to decline. Proposed mitigation strategies include fish transfer facilities, provision of flow releases from the dam (environmental flows) to sustain lungfish habitat and breeding downstream, and translocation of hatchery-reared juvenile lungfish into suitable natural habitats. These mitigation efforts may not be sufficient to secure the genetic diversity and long-term viability of lungfish populations in the Mary River.  相似文献   

4.
Abstract  The red imported fire ant, Solenopsis invicta , a damaging invasive pest, was discovered in February 2001 in Brisbane, Australia at two sites, Fisherman Islands and suburban Richlands-Wacol. Using four microsatellite loci and the protein marker Gp-9 , we compared the two infestations with each other, and with potential source populations in North and South America to better understand the history of their introduction to Brisbane. Based on an analysis of molecular variance, as well as a maximum likelihood tree of colonies from the two Australian sites, we found that the two sites were genetically distinct and were almost certainly introduced separately. All of the colonies at Fisherman Islands were monogynous, headed by a single queen, while the Richlands-Wacol site had a mixture of single-queen monogynous and multiple-queen polygynous colonies. However, the monogynous and polygynous colonies at the Richlands-Wacol site were not genetically distinct from each other, and probably constitute a single, mixed introduction. Based on allele frequencies at the microsatellite loci, and Gp-9 , both Australian infestations were more similar to North American populations than to South American, though the Fisherman Islands infestation was intermediate, making it difficult to assign. Thus, there has been one introduction from either a North or South American monogynous population at Fisherman Islands, and one introduction from a mixed monogynous/polygynous North American population at Richlands-Wacol. These findings have implications for the control of the current infestations, as well as for the quarantine regulations necessary to prevent additional introductions to Australia.  相似文献   

5.
Effective spatial classification of freshwater biodiversity remains a worldwide conservation challenge. The isolating nature of catchment boundaries over evolutionary timescales makes them potentially important in defining natural units for biodiversity management. We sought to clarify biogeographical relationships amongst drainages within Australia's biodiverse mid‐eastern coastal region (Fitzroy, Burnett, and Mary Catchments) where freshwater communities face considerable urban pressure, using a locally endemic riverine specialist, the white‐throated snapping turtle, Elseya albagula. Mitochondrial and nuclear microsatellite data sets were employed to investigate past and present influences on population connectivity and to identify units for management. Populations within catchments were largely well connected genetically. However, the Fitzroy Catchment contained a distinct genetic lineage, deeply divergent from a second lineage present across the Burnett and Mary Catchments. The two lineages can be considered evolutionarily significant units that reflect historical isolation of the Fitzroy and recent coalescence of the Burnett‐Mary Catchments during lowered Pleistocene sea levels. Congruence with geological evidence and patterns reported for fish and macroinvertebrates supports a shared biogeographical history of a diverse regional biota. This work highlights the need for better spatial classification of freshwater biodiversity at local as well as regional scales, including recognition of potentially cryptic diversity amongst individual river drainages. © 2013 The Linnean Society of London  相似文献   

6.
We use chloroplast DNA sequencing to examine aspects of the pre-European Māori cultivation of an endemic New Zealand root crop, Arthropodium cirratum (rengarenga). Researching the early stages of domestication is not possible for the majority of crops, because their cultivation began many thousands of years ago and/or they have been substantially altered by modern breeding methods. We found high levels of genetic variation and structuring characterised the natural distribution of A. cirratum, while the translocated populations only retained low levels of this diversity, indicating a strong bottleneck even at the early stages of this species’ cultivation. The high structuring detected at four chloroplast loci within the natural A. cirratum range enabled the putative source(s) of the translocated populations to be identified as most likely located in the eastern Bay of Plenty/East Cape region. The high structuring within A. cirratum also has implications for the conservation of genetic diversity within this species, which has undergone recent declines in both its natural and translocated ranges.  相似文献   

7.
We used landscape genetics and statistical models to test how landscape features influence connectivity or create barriers to dispersal for a mountain riparian tree species, Euptelea pleiospermum. Young leaves from 1078 individuals belonging to 36 populations at elevations of 900–2000 m along upper reaches of four rivers were genotyped using eight nuclear microsatellite markers. We found no evidence for the unidirectional dispersal hypothesis in E. pleiospermum within each river. The linear dispersal pattern along each river valley is mostly consistent with the “classical metapopulaton” model. Mountain ridges separating rivers were genetic barriers for this wind-pollinated tree species with anemochorous seeds, whereas river valleys provided important corridors for dispersal. Gene flow among populations along elevational gradients within each river prevails over gene flow among populations at similar elevations but from different rivers. This pattern of gene flow is likely to promote elevational range shifts of plant populations and to hinder local adaptation along elevational gradients. This study provides a paradigm to determine which of the two strategies (migration or adaptation) will be adopted by mountain riparian plants under climate warming.  相似文献   

8.
Genetic analysis of museum specimens offers a direct window into a past that can predate the loss of extinct forms. We genotyped 18 Galápagos finches collected by Charles Darwin and companions during the voyage of the Beagle in 1835, and 22 specimens collected in 1901. Our goals were to determine if significant genetic diversity has been lost since the Beagle voyage and to determine the genetic source of specimens for which the collection locale was not recorded. Using ‘ancient’ DNA techniques, we quantified variation at 14 autosomal microsatellite loci. Assignment tests showed several museum specimens genetically matched recently field-sampled birds from their island of origin. Some were misclassified or were difficult to classify. Darwin''s exceptionally large ground finches (Geospiza magnirostris) from Floreana and San Cristóbal were genetically distinct from several other currently existing populations. Sharp-beaked ground finches (Geospiza difficilis) from Floreana and Isabela were also genetically distinct. These four populations are currently extinct, yet they were more genetically distinct from congeners than many other species of Darwin''s finches are from each other. We conclude that a significant amount of the finch biodiversity observed and collected by Darwin has been lost since the voyage of the Beagle.  相似文献   

9.
Our aim was to investigate the level of genetic differentiation in northern European populations of Atlantic salmon, to establish the genetic relationship among major salmon populations in Russia and North Norway, and to compare these to populations from the western Atlantic lineage. Samples were collected along an east—west axis, from Pechora River in Russia to Restigouche River in Quebec, Canada. A total of 439 individual salmon were collected from seven rivers (sample sizes from 50 to 84 individuals). The samples were analysed for variation at four microsatellite loci; Ssa13.37, Ssa14, Ssa171 and Ssa171. Significant differences were found between most of the European populations, and the populations from the Tana and Pechora Rivers were most distinct. The samples from the Rivers Mezenskaya Pizhma and Emtsa in Arkhangelsk oblast in Russia were not significantly different from each other in an exact test of population differences. All other river pairs were significantly different. These results confirmed the deep genetic divergence between American and European salmon populations demonstrated in earlier studies, with alleles specific to continent found in three of the microsatellites.  相似文献   

10.
Genetic analyses contribute to studies of biological invasions by mapping the origin and dispersal patterns of invasive species occupying new territories. Using microsatellite loci, we assessed the genetic diversity and spatial population structure of mosquitofish (Gambusia holbrooki) that had invaded Spanish watersheds, along with the American locations close to the suspected potential source populations. Mosquitofish populations from the Spanish streams that were studied had similar levels of genetic diversity to the American samples; therefore, these populations did not appear to have undergone substantial losses of genetic diversity during the invasion process. Population structure analyses indicated that the Spanish populations fell into four main clusters, which were primarily associated with hydrography. Dispersal patterns indicated that local populations were highly connected upstream and downstream through active dispersal, with an average of 21.5% fish from other locations in each population. After initially introducing fish to one location in a given basin, such dispersal potential might contribute to the spread and colonization of suitable habitats throughout the entire river basin. The two-dimension isolation-by-distance pattern here obtained, indicated that the human-mediated translocation of mosquitofish among the three study basins is a regular occurrence. Overall, both phenomena, high natural dispersal and human translocation, favor gene flow among river basins and the retention of high genetic diversity, which might help retain the invasive potential of mosquitofish populations.  相似文献   

11.
Knowledge of population-level genetic differences can help explain variation among populations of insect vectors in their role in the epidemiology of specific viruses. Variation in competency to transmit Tomato spotted wilt virus (TSWV) that exists among populations of Thrips tabaci has been associated with the presence of cryptic species that exhibit different modes of reproduction and host ranges. However, recent findings suggest that vector competency of T. tabaci at any given location depends on the thrips and virus populations that are present. This study characterizes the population genetic structure of T. tabaci collected from four locations in North Carolina and examines the relationship between population genetic structure and variation in TSWV transmission by T. tabaci. Mitochondrial COI sequence analysis revealed the presence of two genetically distinct groups with one characterized by thelytokous, parthenogenetic reproduction and the other by arrhenotokous, sexual reproduction. Using a set of 11 microsatellite markers that we developed to investigate T. tabaci population genetic structure, we identified 17 clonal groups and found significant genetic structuring among the four NC populations that corresponded to the geographic locations where the populations were collected. Application of microsatellite markers also led to the discovery of polyploidy in this species. All four populations contained tetraploid individuals, and three contained both diploid and tetraploid individuals. Analysis of variation in transmission ofTSWV among isofemale lines initiated with individuals used in this study revealed that ‘clone assignment,’ ‘virus isolate’ and their interaction significantly influenced vector competency. These results highlight the importance of interactions between specific T. tabaci clonal types and specific TSWV isolates underlying transmission of TSWV by T. tabaci.  相似文献   

12.
The Giant river catfish, Sperata seenghala (Sykes) is commercially very important fish species of South Asia. Genetic variability between its populations collected from two rivers i.e. river Sutlej and river Beas of Indus river system in India were examined using randomly amplified polymorphic DNA analysis. Total 38 fish samples were collected from river Sutlej whereas 46 fish samples were collected from river Beas. Total 40 primers were screened, out of these 7 were selected for studying polymorphism which produced a total of 64 RAPD loci in two populations. Percentage polymorphic loci calculated following 95% criterion was 89.06 % for Beas population as compared to 95.31 % for Sutlej population. Moderate level of genetic divergence (genetic distance of 0.0486) between both the populations suggests distinct population substructure of giant river catfish in both the rivers.  相似文献   

13.
The genetic variation of the critically endangered Corfu killifish (Valencia letourneuxi), an endemic freshwater fish species of the western Balkans, was assessed for nine populations sampled in eight water systems in western continental Greece, the Peloponnese and the Ionian Island of Corfu, using mitochondrial and microsatellite markers. The analyses were based on data from three mtDNA regions (D‐loop, COI and 16S rRNA sequences) and 14 microsatellite loci. Samples from the congeneric species Valencia hispanica and the phylogenetically closely related species Aphanius fasciatus were also used in the study as outgroups. Both the mitochondrial and the microsatellite analyses revealed three distinct population groupings associated with the geographical distribution of the populations: one southern group occupying rivers draining to the Patraikos Gulf, the second one including the populations flowing into the Amvrakikos Gulf and the third, more northern group, including the other populations from rivers in Corfu Island and Epirus flowing into the Ionian Sea. Within these groupings there is limited genetic differentiation between populations; in addition, there is reduced intrapopulation genetic variation, evidenced by low heterozygosity values, number of alleles and haplotype diversity. In terms of taxonomic implications and appropriate management actions for conservation, our data suggest that the major population groups should be regarded at least as three distinct conservation units (CUs), with translocation and restocking actions to take place only within the geographical range of the CU concerned. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 334–349.  相似文献   

14.
While introductions and supplementations using non-native and potentially domesticated individuals may have dramatic evolutionary effects on wild populations, few studies documented the evolution of genetic diversity and life-history traits in supplemented populations. Here, we investigated year-to-year changes from 1989 to 2009 in genetic admixture at 15 microsatellite loci and in phenotypic traits in an Atlantic salmon (Salmo salar) population stocked during the first decade of this period with two genetically and phenotypically distinct source populations. We detected a pattern of temporally increasing introgressive hybridization between the stocked population and both source populations. The proportion of fish returning to the river after a single winter at sea (versus several ones) was higher in fish assigned to the main source population than in local individuals. Moreover, during the first decade of the study, both single-sea-winter and multi-sea-winter (MSW) fish assigned to the main source population were smaller than local fish. During the second decade of the study, MSW fish defined as hybrids were lighter and smaller than fish from parental populations, suggesting outbreeding depression. Overall, this study suggests that supplementation with non-local individuals may alter not only the genetic diversity of wild populations but also life-history traits of adaptive significance.  相似文献   

15.
There has been very little effort to understand genetic divergence between wild and hatchery populations of masu salmon (Oncorhynchus masou). In this study, we used mitochondrial (mt) NADH dehydrogenase subunit 5 gene (ND5) and six polymorphic nuclear microsatellite DNA loci to compare the genetic variability in three hatchery broodstocks of masu salmon with the variability in eight putative wild masu populations sampled in five rivers including one known source river for the hatchery broodstocks. Both ND5 and microsatellites showed no significant genetic divergence (based on FST estimates) between four annual collections from the source river population, suggesting no change in genetic diversity over this time period. The FST estimates, an analysis of molecular variance (AMOVA), and a neighbor-joining tree using both DNA markers suggested significant differentiation between the three hatchery and all eight putative wild populations. We conclude that genetic diversity of hatchery populations are low relative to putative wild populations of masu salmon, and we discuss the implications for conservation and fisheries management in Hokkaido.  相似文献   

16.
To determine the effects of hydrochory on the formation of the present range of a species and the spatial distribution of genetic variation, we assessed the rangewide genetic structure of a hydrochorous riparian Japanese species (Rhododendron ripense) using four nuclear microsatellite loci. The patterns of isolation by distance and Bayesian clustering analyses of 33 populations suggested that the present range, characterized by both localized and disjunct distributions across the sea, arose from two contrasting colonization events: (1) primary colonization along two Pleistocene rivers that have been submerged and become partly isolated by marine transgression by 6000 years ago, and (2) additional range expansions from these rivers into unconnected neighboring rivers as a result of river captures. Along the Pleistocene rivers, frequent gene flow by hydrochory resulted in the retention of considerable genetic diversity within each population and genetic homogenization among populations. Within unconnected neighboring rivers, genetic diversity was also retained by the simultaneous redistribution of many individuals as a result of river captures, whereas restricted gene flow within a river resulted in genetic divergence among the river populations. Thus, the evolutionary history of hydrochorous R. ripense appears to have been strongly shaped by both ancient and modern rivers.  相似文献   

17.
The maintenance of both spatial and genetic connectivity is paramount to the long-term persistence of small, isolated populations living in environments with extreme climates. We aim to identify the distribution of genetic diversity and assess population sub-structuring and dispersal across dwarfed desert populations of Crocodylus suchus, which occur in isolated groups, usually less than five individuals, along the mountains of Mauritania (West Africa). We used both invasive and non-invasive sampling methods and a combination of mitochondrial DNA (12 S and ND4) and microsatellite markers (32 loci and a subset of 12 loci). Our results showed high genetic differentiation and geographic structure in Mauritanian populations of C. suchus. We identified a metapopulation system acting within four river sub-basins (high gene flow and absence of genetic structure) and considerable genetic differentiation between sub-basins (F ST range: 0.12–0.24) with rare dispersal events. Effective population sizes tend to be low within sub-basins while genetic diversity is maintained. Our study suggests that hydrographic networks (temporal connections along seasonal rivers during rainy periods) allow C. suchus to disperse and maintain metapopulation dynamics within sub-basins, which attenuate the loss of genetic diversity and the risk of extinction. We highlight the need of hydrographic conservation to protect vulnerable crocodiles isolated in small water bodies. We propose C. suchus as an umbrella species in Mauritania based on ecological affinities shared with other water-dependent species in desert environments.  相似文献   

18.
Newly established populations are susceptible to founder events that reduce genetic variation. This may be counterbalanced by gene flow after populations become established or founders coming from genetically different populations. However, initial gains in genetic diversity may be short-lived if there is limited mixing between lineages and subsequent inbreeding, or if one lineage sweeps to fixation through selection or genetic drift. Here, we report on the genetic changes taking place within two newly established populations of intertidal snail over a 15-year period (~ 10 generations). Each translocation was set up using multiple, genetically distinct source populations. Our data show that higher levels of variation in the translocated populations compared to the source populations were maintained over time for both nuclear (microsatellite) and mitochondrial genes. Small changes in allele and haplotype frequencies were observed in the source populations and in one of the translocated populations, but marked changes were evident in the other, where there was a dramatic shift towards the genetic make-up of one of the source populations. These genetic changes occurred despite relatively large numbers of founders (200-374 adults) and no evidence of the population experiencing a severe reduction in effective population size. Our study shows that the genetic composition of newly established populations can vary greatly over time and that genetic outcomes can be highly variable, and significantly different from initial expectations, even when they are established using high numbers of individuals and involve source populations from the same geographic regions.  相似文献   

19.
Habitat fragmentation can act to cause reproductive isolation between conspecifics and undermine species’ persistence, though most studies have reported the genetic condition of populations that have already declined to a very small size. We examined genetic diversity within the vulnerable, declining koala (Phascolarctos cinereus) population in Southeast Queensland, Australia to determine the genetic impact of ongoing threatening processes. Five hundred and twelve koalas from ten Southeast Queensland Local Government Areas on the mainland and one island were genotyped at six polymorphic microsatellite loci. Based on Bayesian cluster analysis incorporating spatial data, the regional koala population was subdivided into six clusters, with location of major roads and rivers appearing to be consistent with being barriers to gene flow. The distribution of mtDNA control region haplotypes identified distinct coastal and inland clades suggesting that historically there was gene flow between koalas along the coast (though little interchange between coastal and inland animals). In contrast, koalas from the Koala Coast (Brisbane City, Logan City and Redland Shire) were shown by microsatellite analysis to be genetically distinct from adjacent areas. It is likely, therefore, that more recent reductions in population size and restricted gene flow through urbanisation have contributed to the genetic differentiation of koalas in the Koala Coast region.  相似文献   

20.
Global tiger Panthera tigris populations mostly survive within the geographically fragmented forest patches, thereby limited genetic exchange between isolated populations. Assessing the genetic status of these populations can reveal the effects of dispersal barriers and provide critical insights to guide future conservation actions. Using non-invasively collected biological samples, we investigated fine-scale genetic structure of tigers in the Sundarbans mangrove forests intersected by the complex river systems, and which holds one of the largest global tiger populations. We genotyped 52 tiger samples at 10 polymorphic microsatellite loci, and sequenced 33 of them for a total of 1263 base-pairs at four mitochondrial gene fragments. Microsatellite analyses exhibit a signature of fine-scale genetic structure, which might have been the consequence of limited tiger dispersal due to wide rivers across the Sundarbans. Similarly, mitochondrial data show a historic pattern of population isolation that might be due to wider rivers across the entire Sundarbans shared by Bangladesh and India. Given the intrinsic nature of the mangrove habitat embedded with numerous rivers, increased commercial traffic and human activities may further impede tiger dispersal across wide rivers, escalating further genetic isolation of the Sundarbans tigers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号