首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Surface sediments were collected from the coastal zone of Drapetsona–Keratsini (Saronikos Gulf, Greece) in December 2012 for determining the local benthic foraminiferal community, identifying their spatial distribution patterns, and evaluating the response of foraminiferal species to geochemical composition through the hierarchical cluster analysis, principal component analysis and Spearman's rho correlation. Foraminifera can be classified into three distinct assemblages associated with the granulometry, elemental geochemistry, particulate organic carbon content and degree of sediment contamination. A relatively low-diversity assemblage, dominated by stress-tolerant taxa with Ammonia tepida Bolivina spathulata and Bulimina elongata being the prevailing species, is characteristic of the silty seabed of the main part of Drapetsona coastal zone and the Keratsini Port central basin, where organic carbon content, aliphatic and polycyclic aromatic hydrocarbons concentrations and trace metal loads are greatly elevated. On the sandy bottom of the investigated area, relatively high frequencies of miliolids prevail. An epiphytic rotaliid-dominated assemblage is recorded in the slightly-polluted sedimentary bottom of the inner and western part of the Keratsini Port.  相似文献   

2.
Saronikos Gulf, including the industrial zone of Elefsis Bay and the Port of Piraeus, is one of the most anthropogenically impacted coastal regions of Greece. Distinct assemblages of benthic foraminifers in sediment samples, collected from this gulf in February 2012, defined three zones that reflect abiotic parameters of the sediments (e.g., organic carbon, metal content). A low-diversity assemblage, dominated by stress-tolerant Ammonia tepida and Bulimina spp., was characteristic of samples from Elefsis Bay. Samples from the western and central part of Saronikos Gulf were the most variable with respect to both abiotic parameters and the foraminiferal assemblage, characterized by a mix of stress-tolerant and more sensitive taxa, especially Bolivina spp. and Nonion fabum. Samples from the coast of Salamis and at the eastern sector of the gulf were characterized by a diverse assemblage that included Peneroplis pertusus, miliolids, and a variety of small, epiphytic rotaliid taxa. A new biotic index, the Foram Stress Index (FSI), is based on the relative percentages of two ecological groups of benthic foraminiferal species, grouped according to their tolerance/sensitivity to organic matter enrichment and weighted proportionately to obtain a formula to define five ecological-status classes. The FSI produced three rankings for these samples (Poor, Moderate and Good), that strongly correlate with the macroinvertebrate-classification tool known as the BENTIX Index. The FSI provides a new tool to assess sediment or substrata quality based upon the benthic foraminiferal assemblages, which are a significant component of living meiobenthic communities that are generally not considered in most biotic benthic indices.  相似文献   

3.
A comparative study of recent epiphytal ostracod and benthic foraminiferal populations was conducted in August 2001, at two gulfs (Korthi and Kastro) located at the southeastern part of Andros Island (middle Aegean Sea, Greece). Thirty samples (representing living macro-benthic algae and seagrasses) from both gulfs were studied and a total of 34 ostracod species and 60 benthic foraminiferal species were identified. In the gulf of Korthi both benthic foraminiferal and epiphytal ostracod assemblages were characterized by high abundances of Amphistegina lessonii and Xestoleberis spp., respectively, therefore the performed Q-mode cluster analysis verified the presence of a Normal Environment Biofacies (NE). Declined Environment (DE) and Stressed (SE) Environment Biofacies were recognized in the gulf of Kastro, an area more affected by anthropogenic activities. Several deformed foraminiferal specimens have been documented in the assemblages from both gulfs, but malformed tests are significantly increased in SE Biofacies of Kastro gulf. This study suggests that great accumulations of A. lessonii (35-60%) associated with high frequencies of Xestoleberis communis and/or Xestoleberis decipiens and high species diversities can be used as bioindicators of coastal health.  相似文献   

4.
《Marine Micropaleontology》2008,66(3-4):113-136
Geographic and vertical distribution patterns of living Radiolaria are closely related to the characters of the water column. We studied living Radiolaria in samples collected at closely spaced depth intervals in the waters surrounding Japan in order to understand their vertical distribution and its controlling factors. Such information is needed to reconstruct past vertical water mass structure. The Japanese Islands are surrounded by the marginal Japan Sea and the North Pacific Ocean, and from approximately 46° N to 26° N. They thus extend across a large latitudinal range and are exposed to a similarly wide range of environmental conditions, inducing the warm Kuroshio, Tsushima, and Tsugaru Currents and the cold Oyashio Current.We performed plankton tows (mesh size 63 mm) from late May to early June 2002 at eight sites, sampling the upper 200 m of the water column, at seven depth intervals.We recognized five radiolarian assemblages: the Upper Surface Assemblage (0–40 m), the Lower Surface Assemblage (40–80 m), the Surface Assemblage (0–80 m), the Subsurface Assemblage (80–200 m), and the Lower Surface–Subsurface Assemblage (40–200 m) groups. Pseudodictyophimus gracilipes and Tetrapyle octacantha (juvenile) show “tropical submergence”, i.e. they live at the surface in high latitudes and at greater depth in low latitudes. Four taxa live at specific temperature and salinity: Acrosphaera spinosa, Larcopyle butschlii, Challengeron diodon, and Stichocorys seriata. Four taxa are associated with characteristic temperatures: Neosemantis distephanus, Arachnocorys umbellifura, Antarctissa sp. 1, and Saccospyris conithorax.  相似文献   

5.
Surface sediment samples taken by ? corer from 45 stations on the Norwegian continental margin and in the Norway Basin have been investigated for their benthic foraminiferal content. Unlike previous studies, the living benthic foraminiferal fauna was differentiated from empty tests comprising the foraminiferal death assemblage. Factor analysis of both the living and dead faunal data reveals six living species assemblages and five corresponding dead assemblages. The additional living assemblage is characterized by the arenaceous speciesCribrostomoides subglobosum that dominates between 1400 and 2000 m water depth, but is rare in the dead faunal data.Trifarina angulosa and, to a lesser extent,Cibicides lobatulus characterize the shallowest foraminiferal assemblage from 200 to 600 m water depth, where it is associated with strong bottom currents and warm, saline Atlantic water of the North Atlantic Drift. On the slope between 600 and 1200 m water depth, theMelonis zaandami Species Assemblage dominates, particularly in areas characterized today by rapid sedimentation of terrigeneous material. Between 1000 and 1400 m depth, where the slope is covered by fine grained, organic-rich, terrigeneous mud, the living foraminiferal assemblage is characterized byCassidulina teretis andPullenia bulloides. Below 1400 m, three foraminiferal assemblages are found:C. subglobosum is found from 1400 to 2000 m,Cibicidoides wuellerstorfi andEpistominella exigua predominantly live from 2000 to 3000 m water depth, and below 3000 m,Oridorsalis umbonatus andTriloculina frigida dominate the fauna.All of theElphidium excavatum tests found in this study and theCassidulina reniforme tests found above 500 m water depth were found to be reworked.Analysis of the sediment grain-size distribution and the organic carbon content in surface samples from the deepest stations suggest that the abundance ofC. wuellerstorfi andE. exigua is positively correlated to relatively coarse (caused by planktic foraminifera) and organic-rich sediments, whereas high frequencies ofO. umbonatus andT. frigida coincide with low organic carbon content. We suggest thatC. wuellerstorfi is adapted to deep-sea environments with relatively high food supply, tolerating relatively low interstitial water oxygen content, whereasO. umbonatus may tolerate lower food supply prefering well-oxygenated interstitial waters.  相似文献   

6.
《Marine Micropaleontology》2010,74(3-4):207-225
The distribution of recent shallow-water benthic foraminifera in surface sediment samples from cool-water carbonate environments of the Oran Bight, Alboran Platform and Mallorca Shelf in the Western Mediterranean Sea was studied. Multivariate statistical analyses resulted in the identification of species assemblages, representing different environmental settings. In all three regions the assemblages show a distinct bathymetric zonation that is mainly attributed to the distribution of rhodoliths and related substrates, but also to water turbulence and the availability of food at the sea floor. The live assemblages (Rose Bengal stained individuals) are characterised by rather low diversity and low standing stocks, likely reflecting seasonal population dynamics. In the Oran Bight, elevated standing stocks of “high food”-taxa suggest the impact of anthropogenic eutrophication on the near-coastal benthic ecosystems of this area. The diversity of the dead assemblages is higher than in siliclastic shelf ecosystems of the Mediterranean Sea but lower when compared to carbonate environments of the Levantine Sea. This regional difference is mainly attributed to lower sea surface temperatures and the lack of Lessepsian invaders in the western Mediterranean Sea. In all study areas, a distinct faunal change occurs between approximately 80–90 m water depth. This change coincides with the lower distribution limit of living rhodoliths at the shelf of Mallorca, providing coarse-grained substrates that are dominated by attached taxa. Below this depth interval, the fauna shows regional differences depending on the grain-size and related accumulation of organic material. Fine-grained substrates with infaunal niches are restricted to low-energy environments on the deeper shelf southwest off Mallorca.  相似文献   

7.
Coral reefs are now subject to global threats and influences from numerous anthropogenic sources. Foraminifera, a group of unicellular shelled organisms, are excellent indicators of water quality and reef health. Thus we studied a set of samples taken in 1992 to provide a foraminiferal baseline for future studies of environmental change. Our study provides the first island-wide analysis of shallow benthic foraminifera from around Moorea (Society Archipelago). We analyzed the composition, species richness, patterns of distribution and abundance of unstained foraminiferal assemblages from bays, fringing reefs, nearshore and back- and fore-reef environments. A total of 380 taxa of foraminifera were recorded, a number that almost doubles previous species counts. Spatial patterns of foraminiferal assemblages are characterized by numerical abundances of individual taxa, cluster groups and gradients of species richness, as documented by cluster, Fisher α, ternary plot and Principal Component Analyses (PCA). The inner bay inlets are dominated by stress-tolerant, mostly thin-shelled taxa of Bolivina, Bolivinella, Nonionoides, Elongobula, and Ammonia preferring low-oxygen and/or nutrient-rich habitats influenced by coastal factors such as fresh-water runoff and overhanging mangroves. The larger symbiont-bearing foraminifera (Borelis, Amphistegina, Heterostegina, Peneroplis) generally live in the oligotrophic, well-lit back- and fore-reef environments. Amphisteginids and peneroplids were among the few taxa found in the bay environments, probably due to their preferences for phytal substrates and tolerance to moderate levels of eutrophication. The fringing reef environments along the outer bay are characterized by Borelis schlumbergeri, Heterostegina depressa, Textularia spp. and various miliolids which represent a hotspot of diversity within the complex reef-lagoon system of Moorea. The high foraminiferal Fisher α and species richness diversity in outer bay fringing reefs is consistent with the disturbance-mosaic (microhabitat heterogeneity) hypothesis.Calculations of the FORAM Index (FI), a single metric index to assess reef vitality, indicate that all fore- and most back-reef environments support active carbonate accretion and provide habitat suitability for carbonate producers dependent on algal symbiosis. Lowest suitability values were recorded within the innermost bays, an area where natural and increasing anthropogenic influences continue to impact the reefs. The presence of habitat specific assemblages and numerical abundance values of individual taxa show that benthic foraminifera are excellent recorders of environmental perturbations and good indicators useful in modern and ancient ecological and environmental studies.  相似文献   

8.
The present work analyses the seasonal evolution of planktonic assemblages and particle fluxes through the water column in the Eastern Alboran Sea (Western Mediterranean) at 35º55.47'N/01º30.77'W. A Sediment trap was deployed below the influence of the Almeria-Oran Front (AOF), a semi-permanent geostrophic front, during July 1997 to June 1998. Overall, the temporal variability of coccolithophore, planktonic foraminifer, diatom, benthic and wind-carried biogenic particle fluxes is linked to the seasonal evolution of sea surface hydrological structures. Maximum planktonic fluxes were found during high-productivity periods and wind-induced upwelling, following a trimodal pattern, with maximum fluxes in July 1997, November–December 1997, and April–May 1998. These periods were characterized by vertical mixing and the full development of anticyclonic gyres in the Alboran Sea. The annual flux of coccolithophores was dominated by the “small Gephyrocapsa Group” and Emiliania huxleyi, whereas Turborotalita quinqueloba and Globigerina bulloides dominated the foraminiferal fluxes, and Chaetoceros Resting Spores (RS) were predominant in the diatom assemblage. Benthic specimens were also collected with the sediment trap, suggesting a variable influence of bottom water activity. Wind-driven particles (phytoliths and fresh-water diatoms) were collected along the year, but their fluxes followed the local wind regime.The high Sea Surface Temperature (SST) during fall due to weaker than usual westerly winds, and the pressure anomaly prevailing in the Alboran Sea during early winter, were reflected in the planktonic assemblages by the proliferation of warm, lower photic layer inhabitants and/or oligotrophic taxa of coccolithophores (Florisphaera profunda), planktonic foraminifers (Globigerinoides ruber and Globorotalia inflata) and diatoms (Leptocylindrus danicus). These unusual climatic conditions in the eastern Alboran Sea must have been caused by the 1997–1998 ENSO event.  相似文献   

9.
In this study, we investigated the relationship between environmental parameters (water and sediment) and benthic foraminiferal assemblages found in nearshore siliciclastic sediment in the Arabian Gulf. Nearshore marine water and sediment samples were collected from a beach on the Gulf of Bahrain located south of Al Khobar, Saudi Arabia. The water samples were analyzed for biochemical oxygen demand (BOD5) and other chemical analyses. The sediment samples were tested for sediment oxygen demand (SOD) and heavy metal analysis. Results showed the BOD5 levels were below the detection limit (<1 ppm), while the mean SOD value was 0.97 ± 0.08 g/m2·day. The water and sediments were unpolluted and free of eutrophic enrichment, while the sediment was anoxic. The two most common genera in the benthic foraminiferal assemblage, Ammonia and Elphidium, are typical of shallow water sandy substrates. This is the first reported comparison between SOD and benthic foraminiferal assemblages.  相似文献   

10.
Environmental conditions and productivity changes in the southeastern Okhotsk Sea have been reconstructed for the last 20 ka using planktonic and benthic foraminiferal oxygen isotope records and calcium carbonate, organic carbon and opal content data from two sediment cores. Species variability in benthic foraminiferal and diatom assemblages provides additional palaeoceanographic evidence. AMS radiocarbon dating of the sediments and oxygen isotope stratigraphy serve as the basis for the age models of the cores for the last 20 14C kyr and for correlation between environmental variations in the Okhotsk Sea, and regional and global climate changes. Benthic foraminiferal assemblages in the two cores (depth 1590 and 1175 m) varied with time, so that we could recognise seven zones with different species composition. Changes in the benthic foraminiferal assemblages parallel major environmental and productivity variations. During the last glaciation, fluxes of organic matter to the sea floor showed strong seasonal variations, indicated by the presence of abundant A. weddellensis and infaunal Uvigerina spp. Benthic foraminiferal assemblages changed with warming at 12.5–11 and 10–8 14C kyr BP, when productivity blooms and high organic fluxes were coeval with global meltwater pulses 1A and 1B. Younger Dryas cooling caused a decline in productivity (11–10 kyr BP) affecting the benthic faunal community. Subsequent warming triggered intensive diatom production, opal accumulation and a strong oxygen deficiency, causing significant changes in benthic fauna assemblages from 5.26–4.4 kyr BP to present time.  相似文献   

11.
Cold-water coral ecosystems are characterised by a high diversity and population density. Living and dead foraminiferal assemblages from 20 surface sediment samples from Galway and Propeller Mounds were analysed to describe the distribution patterns of benthic foraminifera on coral mounds in relation to different sedimentary facies. Hard substrates were examined to assess the foraminiferal microhabitats and diversities in the coral framework. We recognised 131 different species, of which 27 prefer an attached lifestyle. Epibenthic species are the main constituents of the living and dead foraminiferal assemblages. The frequent species Discanomalina coronata was associated with coral rubble, Cibicides refulgens showed preference to the off-mound sand veneer, and Uvigerina mediterranea displayed abundance maxima in the main depositional area on the southern flank of Galway Mound, and in the muds around Propeller Mound. The distribution of these species is rather governed by their specific ecological demands and microhabitat availability than by the sedimentary facies. Benthic foraminiferal assemblages from coral mounds fit well into basin-wide-scale distribution patterns of species along the western European continental margin. The diversity of the foraminiferal faunas is not higher on the carbonate mounds as in their vicinity. The living assemblages show a broad mid-slope diversity maximum between 500 and 1,300 m water depth, which is the depth interval of coral mound formation at the Celtic and Amorican Margin. The foraminiferal diversity maximum is about 700 m shallower than comparable maxima of nematodes and bivalves. This suggests that different processes are driving the foraminiferal and metazoan diversity patterns.  相似文献   

12.
Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoideaBarbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea–Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus–Pteriidae assemblage occurs on MilleporaAcropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigeraCtenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.  相似文献   

13.
Q-mode factor analysis of total foraminiferal abundance data (living plus dead) from 250 grab samples taken from the continental margin off Nova Scotia allows the determination of eight factor assemblages. On the northeastern shelf, an exclusively agglutinated assemblage dominated byAdercotryma glomerata occupies both banks and basins. Central shelf basins contain a predominantly calcareous assemblage dominated byGlobobulimina auriculata andNonionellina labradorica. Transitional between these two factor assemblages is an agglutinated assemblage dominated bySaccammina atlantica. Consistently present along the shelf edge is aTrifarina angulosa assemblage. In northeastern bays and a few samples near Sable Island, an agglutinatedEggerella advena assemblage is found. A relict and transport affected assemblage dominated byElphidium excavatum occurs in the southwestern approaches to Emerald Basin. Sandy/gravelly areas of the inner shelf and outer bank regions are characterized by aCibicides lobatulus assemblage.The statistical relationships of these defined assemblages to various aspects of the marine environment (depth, temperature, salinity, percent gravel, sand and mud) were investigated through multiple regression techniques. Results indicate that the present foraminiferal distribution patterns off Nova Scotia are influenced by the prevailing watermass characters and substrate. TheAdercotryma glomerata assemblage is influenced by the presence of cold, (0–4°C) low salinity waters (32–33‰) of arctic, Labrador Current origin. The central basin assemblage (G. auriculata) is related to warmer (8–12°C) more saline waters (35‰) of slope origin. The transition between these two bottom waters is marked by the opportunisticSaccammina atlantica assemblage. Preferred substrate character possibly determines the occurrence of theCibicides lobatulus, Islandiella islandica andEggerella advena assemblages.Trifarina angulosa shows a significant relationship to salinity and depth.Although the surficial sediments on the Nova Scotian Shelf are largely the product of reworking of glacial deposits during late glacial and early Holocene times, all but theE. excavatum factor assemblage appear to be in equilibrium with the modern oceanographic regime.  相似文献   

14.
《Marine Micropaleontology》2007,62(4):155-170
We analyzed planktic foraminiferal assemblages, oxygen and carbon isotope records, and the presence or absence of laminations to reconstruct the paleoenvironments of the southern Japan Sea since the last glacial period. Data were collected from two well-dated cores. One core (water depth 999 m) included thinly laminated mud layers, the other (water depth 283 m) contained nonlaminated sediments. Tephrochronology and accelerator mass spectrometry 14C dating of 14 horizons revealed that the two cores contained continuous records of the last 27 cal kyr. A total of 13 planktic foraminiferal species belonging to six genera were identified in down-core samples. The typical indicators of the Tsushima Current water, Globigerinoides ruber, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, Globigerinoides tenellus, and Globigerinita glutinata occurred since 9.3 cal kyr BP. Neogloboquadrina incompta, which was the dominant species in the Tsushima Current region of the modern Japan Sea, first occurred at 8.2 cal kyr BP and dominated the assemblage since 7.3 cal kyr BP. These results clearly indicate that the warm Tsushima Current started to inflow into the Japan Sea at 9.3 cal kyr BP, and the modern surface conditions in the southern Japan Sea were essentially established at 7.3 cal kyr BP. Our data and comparison of the presence or absence of laminated sediments in three locations from the southern Japan Sea suggest that deep circulation during the deglacial period was weaker than that at present. In addition, deep circulation in the modern Japan Sea, which supplies oxygen-rich water to the entire basin, started probably in association with the first inflow of the Tsushima Current beginning at 9.3 cal kyr BP.  相似文献   

15.
Previously unreported dasycladaleans and one morpho-taxon of assumed algal origin are described from Upper Turonian to Santonian rocks of the Lower Gosau Subgroup (LGS) of the Northern Calcareous Alps. A taxonomic inventory of green-algal/benthic foraminiferal assemblages shows that assemblages of “pure” carbonate environments are more diverse than those of siliciclastic and mixed siliciclastic-carbonate settings. A comparison of the taxonomic inventory of the LGS with assemblages in similar sedimentary successions of the Alpine-Mediterranean realm shows the highest similarity with the “Mirdita Zone” of the internal Dinarids. Comparability of assemblages, however, is limited due to narrow chronostratigraphic overlap and/or because of scarcity of data from areas outside the Alps. Although higher than previously known, the total diversity of the green-algal/benthic foraminiferal assemblage of the LGS is clearly inferior to that of the peri-Adriatic carbonate platforms.  相似文献   

16.
The raised coral reef sequences at Kish Island provide a rare window into the depositional setting and paleoenvironment of a high-latitude, shallow-water coral reef that developed under turbid conditions in the Persian Gulf during Marine Isotope Stage 7 (~200 to 250?ka). Six sedimentary facies and eight foraminiferal assemblages can be identified throughout the sequence. A ninth assemblage can be defined for the modern subtidal realm. At the base of the sequence is a marl rich in hyaline foraminifera (Elphidium, Ammonia, Asterorotalia, Bulimina, Nonion, and Quinqueloculina) and ostracods, which was deposited in about 30–40?m water depth in a turbid deltaic setting. Shallowing resulted in the marl becoming sandy, and changing to a mollusc-rich facies with rare foraminifera (mostly smaller miliolid taxa) that formed the substrate for coral recruitment. The coral marl layer contains many large corals embedded in situ in an aggregate and coralline algae-rich marl. Two abundance peaks in the foraminifera occur at the base and mid-way through this layer, which also correspond to a change from Murrayinella-dominated to Placopsilina-dominated assemblages, indicating deepening and more open-marine conditions, but elevated turbidity. Towards the top of the layer, abundance of foraminifera decreases and miliolid foraminifera become dominant. The top-most layer is dominated by coral and mollusc fragments and has an Amphistegina-rich reef-related assemblage. Of the Late Pleistocene foraminiferal assemblages, the Murrayinella-, Pararotalia-, and Placopsilina-dominated assemblages are no longer present in the modern gulf for unknown reasons. Of the other five assemblages, only the Amphistegina assemblage is found within proximity to the modern Kish Island. The Elphidium and Asterorotalia-Bulimina assemblages are from deeper areas of the gulf. The Ammonia and Quinqueloculina assemblages occur in lagoonal sediments on the Arabian side of the gulf. Like the modern Persian Gulf, the diversity of foraminifera was low (~80 common species) during the Pleistocene and does not correlate with foraminiferal abundance.  相似文献   

17.
The extensive human-mediated modifications of shallow coastal habitats drastically alter selection regimes and may assist alien invasions. The preferential presence of a non-indigenous scleractinian coral (Oculina patagonica) on anthropogenic hard substrata was investigated in a highly disturbed coastal area, along the eastern Saronikos Gulf (Aegean Sea, Eastern Mediterranean). Although the species occurred on both natural and anthropogenic substrata at similar frequencies, its abundance was substantially higher on the latter. The species was present all along the shallow (0.5–5 m) infralittoral zone of the studied coastline, and its percent cover even exceeded 50 % at a site of anthropogenic hard substratum. The occupancy of the species declined with distance from a highly disturbed industrialized/urbanized area (Athens metropolitan coastal front and the port of Piraeus). Space availability as a result of habitat modification appears to have been an important factor enhancing the coral’s abundance in this area. The ongoing degradation of the coastal zone, as a combined effect of coastal pollution, proliferation of artificial substrata and overgrazing seems to be paving the way to this new invasion in the Aegean Sea.  相似文献   

18.
Coastal benthic foraminifera are widely studied as indicators of environmental disturbance. This paper presents a synthesis of the studies that showed correlations between foraminiferal assemblages and various environmental problems along the western French coasts. Pollution in coastal environments may be chronic, resulting from current activities, or may result from accidental events. All the studies show that foraminifera may be used as indicators of pollution after deconvoluting from natural impacts. The most sensitive foraminifera identified by these studies are Haynesina germanica, Ammonia tepida, Cribroelphidium excavatum, bolivinids and Eggerelloides scabrus.  相似文献   

19.
Planktonic foraminiferal analyses of six deep-sea sediment cores from the central North Atlantic east of the Azores Islands between 37°N and 40°N show distinct oscillations in planktonic foramineferal assemblages during the last 300,000 years. A paleoclimatic curve has been constructed using “Total Fauna Analysis” that reveals three glacial and four interglacial episodes. Relatively minor climatic oscillations are superimposed upon the major glacial-interglacial episodes. The paleoclimatic curve is similar to previous paleoclimatic curves from the Atlantic and adjacent areas. Minor paleoclimatic fluctuations are more distinct in paleoclimatic curves from high latitudes of the Atlantic.The faunal assemblages are transitional between subarctic and subtropical assemblages. During portions of the interglacial episodes, the assemblage is dominated by Globorotalia inflata. Neogloboquadrina pachyderma (dextral-coiling) or Globigerina bulloides dominate during the remainder of the interglacial episodes and during the glacial episodes. Glacial episodes are also marked by particularly high frequencies of Globigerina quinqueloba and Globorotalia scitula. Interglacial episodes are also marked by increases in Globorotalia truncatulinoides, Globigerinoides ruber, and Globigerinella aequilateralis.The planktonic foraminiferal faunal oscillations in the cores are complex and cannot be entirely explained by temperature variation. Other parameters such as salinity, nutrients and biological competitin must influence the faunal oscillations.The faunas suggest no major planktonic foraminiferal faunal boundaries migrated across the area between 37°N and 40°N in the central North Atlantic during the last 300,000 years.  相似文献   

20.
There have been few studies of non-pollen palynomorphs (NPP) in Holocene brackish water environments. The Black Sea is one of the world’s largest and deepest bodies of stable brackish water and a natural laboratory for study of marine carbon cycling to anoxic sediments. The main NPP in the modern sediments of this brackish water sea are dinoflagellate cysts (dinocysts), acritarchs (mainly the prasinophytes Cymatiosphaera, Micrhystridium, Sigmopollis and Pseudoschizaea) and diverse fungal remains. Other NPP include colonial algae, tintinnids, copepod and cladoceran egg covers, testate amoebae and microforaminiferal linings. These NPP assemblages are similar to those in the marginal marine environment of the Pliocene St. Erth Beds (England), but have more abundant NPP, and virtually lack scolecodonts. In the Black Sea corridor, modern assemblages from areas with salinity >22‰ have higher percentages of microforaminiferal linings and fewer prasinophytes, colonial algae and fungal spores. Prasinophytes dominate only in mid-Holocene sediments, during a 2000 years interval of sea level transgression and sapropel deposition. Early Holocene sediments have lower dinocyst diversity, increased fresh–brackish water colonial algae (Pediastrum spp. and Botryococcus braunii), zygnemataceous spores and desmids (including Zygnema, Cosmarium), ostracod linings and fewer foraminiferal linings. These assemblages are similar to those in the Baltic Sea where the annual salinity is about 6–8‰.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号