首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
1. Activation by H+ and by Ca2+ of 2-oxoglutarate dehydrogenase extracted from mitochondria of normal or acidotic rat kidney is described. This effect, first shown for the enzyme from heart by McCormack & Denton [Biochem. J. (1979) 180, 533--544], is of a regulatory importance in kidney, in which organ, in contrast with heart, increased flux occurs during acute acidosis. 2. In renal-cortical tubules, 2-oxoglutarate concentration fell within 1 min of decreasing the pH and rose again 1--3 min after increasing the pH of the medium. The extent of the decrease in 2-oxoglutarate was directly related to the decrease in pH. A similar fall in the oxoglutarate concentration in the whole perfused kidney was noted within 5 min of inducing acidosis. 3. In tubules, the rates of gluconeogenesis and ammoniagenesis from 1 mM-glutamine were increased by 64 and 33% respectively on decreasing pH to 7.0, the increase in rates being proportional to the fall in pH between 7.4 and 7.0. 4. The increased rates of renal ammoniagenesis and gluconeogenesis seen in acute acidosis in vitro can be accounted for by the increased activity of 2-oxoglutarate dehydrogenase and the tissue concentrations of 2-oxoglutarate when calculated from the Km determined at normal and acidotic pH. 5. The decrease in 2-oxoglutarate concentration seen in acute acidosis implies a fall in intramitochondrial pH in kidney, and is the result of two phenomena, accelerated disposal via 2-oxoglutarate dehydrogenase and maintenance of near equilibrium of glutamate dehydrogenase.  相似文献   

3.
Mitochondria isolated from pea (Pisum sativum L.) leaves are able to transport the keto acid, oxaloacetate, from the reaction medium into he mitochondrial matrix at high rates. The rate of uptake by the mitochondria was measured as the rate of disappearance of oxaloacetate from the reaction medium as it was reduced by matrix malate dehydrogenase using NADH provided by glycine oxidation. The oxaloacetate transporter was identifed as being distinct from the dicarboxylate and the α-ketoglutarate transporters because of its inhibitor sensitivities and its inability to interact with other potential substrates. Phthalonate and phthalate were competitive inhibitors of oxaloacetate transport with Ki values of 60 micromolar and 2 millimolar, respectively. Butylmalonate, an inhibitor of the dicarboxylate and α-ketoglutarate transporters, did not alter the rate of oxaloacetate transport. In addition, a 1000-fold excess of malate, malonate, succinate, α-ketoglutarate, or phosphate had little effect on the rate of oxaloacetate transport. The Km for the oxaloacetate transporter was about 15 micromolar with a maximum velocity of over 500 nanomoles per milligram mitochondrial protein/min at 25°C. No requirement for a counter ion to move against oxaloacetate was detected and the highest rates of uptake occurred at alkaline pH values. An equivalent transporter has not been reported in animal mitochondria.  相似文献   

4.
H G Preuss  D M Roxe  E Bourke 《Life sciences》1987,41(14):1695-1702
We believe that two findings are interconnected and help to comprehend a major mechanism behind the regulation of renal ammonia production during acidosis. First, slices from acidotic compared to control and alkalotic rats produce more ammonia from glutamine. Second, inhibition of renal oxidative metabolism at various points by metabolic inhibitors augments slice ammoniagenesis. Based on this, our purpose was to determine whether enhanced renal ammoniagenesis during acidosis could occur through the same mechanism as the metabolic inhibitors. However, metabolic inhibitors (malonate; arsenite; 2,4-dinitrophenol) usually decrease while acidosis increases slice gluconeogenesis. There is one known exception. Fluorocitrate, which blocks citrate metabolism, simulates the acidotic condition by enhancing both ammonia and glucose production. Accordingly, a block of oxidative metabolism if located prior to citrate oxidation in the tricarboxylic acid cycle could theoretically augment ammoniagenesis during acidosis. Lactate, is a major renal fuel whose oxidative metabolism would be blocked by fluorocitrate. There, we concentrated on the effects of acidosis on lactate as well as glutamine metabolism. Lactate decarboxylation decreases in the face of increased glucose production during acidosis, and lactate inhibition of glutamine decarboxylation decreases in slices from acidotic rats. Also, we found lesser oxygen consumption in the presence of lactate by kidney slices from acidotic rats compared to control and alkalotic rats. We postulate that relatively less incorporation of lactate into the TCA cycle, causing decreased citrate formation and citrate oxidation during acidosis, contributes, at least in part, to acidotic adaptation of ammoniagenesis.  相似文献   

5.
Hypokalemia is associated with increased ammoniagenesis and stimulation of net acid excretion by the kidney in both humans and experimental animals. The molecular mechanisms underlying these effects remain unknown. Toward this end, rats were placed in metabolic cages and fed a control or K(+)-deficient diet (KD) for up to 6 days. Rats subjected to KD showed normal acid-base status and serum electrolytes composition. Interestingly, urinary NH(4)(+) excretion increased significantly and correlated with a parallel decrease in urine K(+) excretion in KD vs. control animals. Molecular studies showed a specific upregulation of the glutamine transporter SN1, which correlated with the upregulation of glutaminase (GA), glutamate dehydrogenase (GDH), and phosphoenolpyruvate carboxykinase. These effects occurred as early as day 2 of KD. Rats subjected to a combined KD and 280 mM NH(4)Cl loading (to induce metabolic acidosis) for 2 days showed an additive increase in NH(4)(+) excretion along with an additive increment in the expression levels of ammoniagenic enzymes GA and GDH compared with KD or NH(4)Cl loading alone. The incubation of cultured proximal tubule cells NRK 52E or LLC-PK(1) in low-K(+) medium did not affect NH(4)(+) production and did not alter the expression of SN1, GA, or GDH in NRK cells. These results demonstrate that K(+) deprivation stimulates ammoniagenesis through a coordinated upregulation of glutamine transporter SN1 and ammoniagenesis enzymes. This effect is developed before the onset of hypokalemia. The signaling pathway mediating these events is likely independent of KD-induced intracellular acidosis. Finally, the correlation between increased NH(4)(+) production and decreased K(+) excretion indicate that NH(4)(+) synthesis and transport likely play an important role in renal K(+) conservation during hypokalemia.  相似文献   

6.
Regulation of the mitochondrial phosphate-dependent glutaminase activity is an essential component in the control of renal ammoniagenesis. Alterations in acid-base balance significantly affect the amount of the glutaminase that is present in rat kidney, but not in brain or small intestine. The relative rates of glutaminase synthesis were determined by comparing the amount of [35S]methionine incorporated into specific immunoprecipitates with that incorporated into total protein. In a normal animal, the rate of glutaminase synthesis constitutes 0.04% of the total protein synthesis. After 7 days of metabolic acidosis, the renal glutaminase activity is increased to a value that is 5-fold greater than normal. During onset of acidosis, the relative rate of synthesis increases more rapidly than the appearance of increased glutaminase activity. The increased rate of synthesis reaches a plateau within 5 days at a value that is 5.3-fold greater than normal. Recovery from chronic acidosis causes a rapid decrease in the relative rate of glutaminase synthesis, but a gradual decrease in glutaminase activity. The former returns to normal within 2 days, whereas the latter requires 11 days. The apparent half-time for glutaminase degradation was found to be 5.1 days and 4.7 days for normal and acidotic rats respectively. These results indicate that the increase in renal glutaminase activity associated with metabolic acidosis is due primarily to an increase in its rate of synthesis. From the decrease in activity that occurs upon recovery from acidosis, the true half-life for the glutaminase was estimated to be 3 days.  相似文献   

7.
Arabidopsis (Arabidopsis thaliana) mutants lacking the tonoplastic malate transporter AttDT (A. thaliana tonoplast dicarboxylate transporter) and wild-type plants showed no phenotypic differences when grown under standard conditions. To identify putative metabolic changes in AttDT knock-out plants, we provoked a metabolic scenario connected to an increased consumption of dicarboxylates. Acidification of leaf discs stimulated dicarboxylate consumption and led to extremely low levels of dicarboxylates in mutants. To investigate whether reduced dicarboxylate concentrations in mutant leaf cells and, hence, reduced capacity to produce OH(-) to overcome acidification might affect metabolism, we measured photosynthetic oxygen evolution under conditions where the cytosol is acidified. AttDT::tDNA protoplasts showed a much stronger inhibition of oxygen evolution at low pH values when compared to wild-type protoplasts. Apparently citrate, which is present in higher amounts in knock-out plants, is not able to replace dicarboxylates to overcome acidification. To raise more information on the cellular level, we performed localization studies of carboxylates. Although the total pool of carboxylates in mutant vacuoles was nearly unaltered, these organelles contained a lower proportion of malate and fumarate and a higher proportion of citrate when compared to wild-type vacuoles. These alterations concur with the observation that radioactively labeled malate and citrate are transported into Arabidopsis vacuoles by different carriers. In addition, wild-type vacuoles and corresponding organelles from AttDT::tDNA mutants exhibited similar malate channel activities. In conclusion, these results show that Arabidopsis vacuoles contain at least two transporters and a channel for dicarboxylates and citrate and that the activity of AttDT is critical for regulation of pH homeostasis.  相似文献   

8.
Glycine is metabolized in isolated renal cortical tubules to stochiometric qualities of ammonia, CO2 and serine by the combined actions of the glycine-cleavage-enzyme complex and serine hydroxymethyltransferase. The rate of renal glycine metabolism by this route is increased in tubules from acidotic rats, but is not affected in vitro by decreasing the incubation pH from 7.4 to 7.1. Metabolic acidosis caused an increase in the renal activity of the glycine-cleavage-enzyme complex, but there were no changes in the activity of serine hydroxymethyltransferase or of methylenetetrahydrofolate dehydrogenase. This enzymic adaptation permits increased ammoniagenesis from glycine during acidosis. The physiological implications are discussed.  相似文献   

9.
Gas chromatography-mass spectrometry was utilized to study the metabolism of [15N]glutamate, [2-15N]glutamine, and [5-15N]glutamine in isolated renal tubules prepared from control and chronically acidotic rats. The main purpose was to determine the nitrogen sources utilized by the kidney in various acid-base states for ammoniagenesis. Incubations were performed in the presence of 2.5 mM 15N-labeled glutamine or glutamate. Experiments with [5-15N]glutamine showed that in control animals approximately 90% of ammonia nitrogen was derived from 5-N of glutamine versus 60% in renal tubules from acidotic rats. Experiments with [2-15N]glutamine or [15N]glutamate indicated that in chronic acidosis approximately 30% of ammonia nitrogen was derived either from 2-N of glutamine or glutamate-N by the activity of glutamate dehydrogenase. Flux through glutamate dehydrogenase was 6-fold higher in chronic acidosis versus control. No 15NH3 could be detected in renal tubules from control rats when [2-15N]glutamine was the substrate. The rates of 15N transfer to other amino acids and to the 6-amino groups of the adenine nucleotides were significantly higher in normal renal tubules versus those from chronically acidotic rats. In tubules from chronically acidotic rats, 15N abundance in 15NH3 and the rate of 15NH3 appearance were significantly higher than that of either the 6-amino group of adenine nucleotides or the 15N-amino acids studied. The data indicate that glutamate dehydrogenase activity rather than glutamate transamination is primarily responsible for augmented ammoniagenesis in chronic acidosis. The contribution of the purine nucleotide cycle to ammonia formation appears to be unimportant in renal tubules from chronically acidotic rats.  相似文献   

10.
As part of a study on the regulation of renal ammoniagenesis in the mouse kidney, we investigated the effect of chronic metabolic acidosis on glutamine synthesis by isolated mouse renal proximal tubules. The results obtained reveal that, in tubules from control mice, glutamine synthesis occurred at high rates from glutamate and proline and, to a lesser extent, from ornithine, alanine, and aspartate. A 48 h, metabolic acidosis caused a marked inhibition of glutamine synthesis from near-physiological concentrations of both alanine and proline that were avidly metabolized by the tubules; metabolic acidosis also greatly stimulated glutamine utilization and metabolism. These effects were accompanied by a large increase (i) in alanine, proline, and glutamine gluconeogenesis and (ii) in ammonia accumulation from proline and glutamine. In the renal cortex of acidotic mice, the activity of phosphoenolpyruvate carboxykinase increased 4-fold, but that of glutamate dehydrogenase did not change; in contrast with what is known in the rat renal cortex, metabolic acidosis markedly diminished the glutamine synthetase activity and protein level, but not the glutamine synthetase mRNA level in the mouse renal cortex. These results strongly suggest that, in the mouse kidney, glutamine synthetase is an important regulatory component of the availability of the ammonium ions to be excreted for defending systemic acid-base balance. Furthermore, they show that, in rodents, the regulation of renal glutamine synthetase is species-specific.  相似文献   

11.
The renal medulla can play an important role in acid excretion by modulating both hydrogen ion secretion in the medullary collecting duct and the medullary PNH3. The purpose of these experiments was to characterize the intrarenal events associated with ammonium excretion in acute acidosis. Cortical events were monitored in two ways: first, the rates of glutamine extraction and ammoniagenesis were assessed by measuring arteriovenous differences and the rate of renal blood flow; second, the biochemical response of the ammoniagenesis pathway was examined by measuring glutamate and 2-oxoglutarate, key renal cortical metabolites in this pathway. There were no significant differences noted in any of these cortical parameters between acute respiratory and metabolic acidosis. Despite a comparable twofold rise in ammonium excretion in both cases, the urine pH, PNH3, and the urine minus blood PCO2 difference (U-B PCO2) were lower during acute hypercapnia. In these experiments, the urine PCO2 was 34 mmHg (1 mmHg = 133.322 Pa) lower than that of the blood during acute respiratory acidosis while the U-B PCO2 was 5 +/- 3 mmHg in acute metabolic acidosis. Thus there were significant differences in medullary events during these two conditions. Although the urine pH is critical in determining ammonium excretion in certain circumstances, these results suggest that regional variations in the medullary PNH3 can modify this relationship.  相似文献   

12.
The effect of anions on Na+-cotransport of succinate, lactate, glucose, and phenylalanine was studied under voltage clamped conditions in brush-border membrane vesicles prepared from rabbit renal cortex. The initial rate of succinate uptake varied by an order of magnitude depending on the anion: the highest rates were obtained with fluoride and gluconate, and the lowest with iodide. The anion sequence corresponded with the inverse of the anion hydration energies. The kinetics of succinate uptake were measured in the presence of fluoride and chloride. There was no difference in the maximal rates of uptake, but the Kt in fluoride (0.30 mM) was less than half that in chloride (0.70 mM), i.e. Cl- behaved as a competitive inhibitor of succinate transport with a Ki of 150 mM. The uptake of L-lactate, D-glucose and L-phenylalanine was less sensitive to anions, and there was no correlation with hydration energies. We conclude that the anion effects on sugar and amino acid uptakes measured under open-circuit conditions are largely due to variations in membrane potential, but in the case of the dicarboxylate transporter anions behave as weak competitive inhibitors. The specificity of the anion inhibition suggests that the dicarboxylate binding sites have a weak field strength relative to water.  相似文献   

13.
The Na(+)/dicarboxylate cotransporter of the renal proximal tubule, NaDC-1, reabsorbs Krebs cycle intermediates, such as succinate and citrate, from the tubular filtrate. Although long-term regulation of this transporter by chronic metabolic acidosis and K(+) deficiency is well documented, there is no information on acute regulation of NaDC-1. In the present study, the transport of succinate in Xenopus oocytes expressing NaDC-1 was inhibited up to 95% by two activators of protein kinase C, phorbol 12-myristate, 13-acetate (PMA) and sn-1, 2-dioctanoylglycerol (DOG). Activation of protein kinase A had no effect on NaDC-1 activity. The inhibition of NaDC-1 transport by PMA was dose-dependent, and could be prevented by incubation of the oocytes with staurosporine. Mutations of the two consensus protein kinase C phosphorylation sites in NaDC-1 did not affect inhibition by PMA. The inhibitory effects of PMA were partially prevented by cytochalasin D, which disrupts microfilaments and endocytosis. PMA treatment was also associated with a decrease of approximately 30% in the amount of NaDC-1 protein found on the plasma membrane. We conclude that the inhibition of NaDC-1 transport activity by PMA occurs by a combination of endocytosis and inhibition of transport activity.  相似文献   

14.
2-Alkylmalonates and O-acyl-L-malates have been found to competitively inhibit the dicarboxylate transporter of Saccharomyces cerevisiae cells, and the substrate derivatives chosen did not penetrate across the plasmalemma under the experiment conditions. Probing of the active site of this transporter has revealed a large lipophilic area stretching between the 0.72 to 2.5 nm from the substrate-binding site. Itaconate inhibited the transport fivefold more effectively than L-malate. This suggests the existence of a hydrophobic region immediately near the dicarboxylate-binding site (to 0.72 nm). The yeast plasmalemmal transporter was different from the rat liver mitochondrial dicarboxylate transporter. An area with variable lipophilicity adjoining the substrate-binding site has been revealed in the latter by a similar method. This area is mainly hydrophobic at distances up to 1.76 nm from the binding site and is separated by a hydrophilic region from 0.38 to 0.88 nm. Fumarate but not maleate competitively inhibited succinate transport into the S. cerevisiae cells. It is suggested that the plasmalemmal transporter binds the substrate in the trans-conformation. The prospects of the proposed approach for scanning lipophilic profiles of channels of different transporters are discussed.  相似文献   

15.
The mitochondrial dicarboxylate carrier has been substantially purified from rat liver mitoplasts by extraction with Triton X-114 in the presence of cardiolipin followed by chromatography on hydroxylapatite. Upon incorporation of the hydroxylapatite eluate into phospholipid vesicles, an n-butylmalonate-sensitive malonate/malate exchange has been demonstrated. This exchange activity is enhanced 226-fold relative to the starting material (i.e. detergent-extracted mitoplasts). Silver-stained sodium dodecyl sulfate-polyacrylamide gradient gels verify the high purity of this fraction relative to the starting material. Nonetheless, the banding pattern indicates that several protein species are still present. As isolated, the dicarboxylate transporter is rather unstable but can be stabilized either by the addition of 10% ethylene glycol and subsequent storage at -20 degrees C or by incorporation into phospholipid vesicles in the presence of malate followed by freezing in liquid nitrogen. Such proteoliposomes catalyze a [14C]malonate uptake which is characterized by a first order rate constant of 1.02 min-1 and a t 1/2 of 41 s. This uptake can be inhibited by dicarboxylates (e.g. succinate, malate, unlabeled malonate) but not by either alpha-ketoglutarate or by tricarboxylates (e.g. citrate, threo-Ds-isocitrate). Furthermore, the reconstituted malonate transport is dependent on internal malate and can be inhibited by n-butylmalonate, mersalyl, p-chloromercuribenzoate, and Pi, but not by N-ethylmaleimide. It is concluded that this highly purified fraction contains a reconstitutively active dicarboxylate transporter which, based on its substrate specificity and inhibitor sensitivity, appears to be identical to the native dicarboxylate transport system found in intact rat liver mitochondria.  相似文献   

16.
Rats develop metabolic acidosis acutely after exercise by swimming. Renal cortical slices from exercised rats show an increase in both ammoniagenesis and gluconeogenesis from glutamine. In addition, plasma from the exercised rats also stimulates ammoniagenesis in renal cortical slices from normal rats. In exercised rats renal phosphate dependent glutaminase shows a 200% activation when the enzyme activity is measured at subsaturating concentration of glutamine (1 mM) while only an increase of 12% in Vmax is observed. When kidney slices from normal rats are incubated in plasma from exercised rats an activation of phosphate dependent glutaminase is obtained with a 1.0 mM (100%) but not with 20 mM glutamine as substrate. This activation of phosphate dependent glutaminase at subsaturating levels of substrate may indicate a conformational change in PDG effected by a factor present in the plasma of exercised acidotic rats.  相似文献   

17.
A nonconventional approach to the measurement of succinate transport through plasmalemma is proposed. It is based on the conditions in which the succinate oxidation rate is limited by transport through plasmalemma. Impermeable specific inhibitor of plasmalemma dicarboxylate transporter was employed as a tool to optimize conditions for the transport activity assay. For this purpose yeast culture was grown in synthetic medium. We selected conditions empirically. After aerobic preincubation of S. cerevisiae cells at 0°C (instead of incubation at 15°C), the rate of endogenous respiration decreased substantially and was stabilized during measurements at a level that was five times lower than oxidation rates in the presence of exogenous substrate. Linearity of Dixon plots for succinate oxidation depression by impermeable O-palmitoyl-L-malate is a test for selected conditions of measurement of plasmalemmal succinate transport. This approach allowed for the reproducible determination of K m for the dicarboxylate transporter (7.3 ± 2.1 mM) within a half-hour period. The advantages and drawbacks of this fast, but indirect, assay of slow substrates transport into the cell are compared with conventional methods.  相似文献   

18.
Joshi AD  Pajor AM 《Biochemistry》2006,45(13):4231-4239
The Na+/dicarboxylate cotransporter 1 (NaDC1) is a low-affinity transporter for citric acid cycle intermediates such as succinate and citrate. The sequence of NaDC1 contains a number of conserved proline residues in predicted transmembrane helices (TMs) 7 and 10. These transmembrane domains are of particular importance because they may be involved in determining the substrate or cation-binding affinity in NaDC1. Four conserved proline residues in TMs 7 and 10 of rabbit NaDC1 were replaced with alanine to promote ideal alpha helix or glycine to promote free conformation, and the mutant transporters were expressed in the HRPE cell line. Mutations of prolines in TM 10 produced decreased protein expression and activity, whereas mutations of prolines in TM 7 completely abolished protein expression and activity. The chemical chaperone glycerol was found to improve the expression of the Pro-351 mutants in TM 7, suggesting that these mutants had defects in trafficking. The inactive mutant transporters at position 351 could also be rescued by the addition of a proline at a second site. For example, the P351A-F347P mutant had restored activity, although its substrate specificity was altered. We conclude that, in TM 7, Pro-327 may be of particular importance in the function of the transporter, whereas Pro-351 may affect protein targeting. The prolines in TM 10, at positions 523 and 524, may not be directly involved in the transporter function but may be necessary for maintaining structure.  相似文献   

19.
The purpose of these studies was to define the properties of the systems that transport hexoses into adipocytes. Glucose appears to enter adipocytes on a single transport system whose maximum velocity is stimulated by insulin and which is competitively inhibited by cytochalasin B, 5-thioglucose, fructose, mannose and 3-O-methylglucose. In contrast, fructose enters adipocytes by at least two separate mechanisms, one an insulin-sensitive transporter (probably the glucose transporter) and the other a mechanism that is insensitive to insulin. The fructose concentration required for half-maximal rates of transport is at least an order of magnitude higher than that for glucose and the maximum velocity of fructose transport is more than double that for glucose.  相似文献   

20.
The availability of amino acids in the brain is regulated by the blood-brain barrier (BBB) large neutral amino acid transporter type 1 (LAT1) isoform, which is characterized by a high affinity (low Km) for substrate large neutral amino acids. The hypothesis that brain amino acid transport activity can be altered with single nucleotide polymorphisms was tested in the present studies with site-directed mutagenesis of the BBB LAT1. The rabbit has a high Km LAT1 large neutral amino acid transporter, as compared to the low Km neutral amino acid transporter at the human or rat BBB. The rabbit LAT1 was cloned from a rabbit brain capillary cDNA library. Alignment of the amino acid sequences of rabbit, human, and rat LAT1 revealed two radical amino acid residues that differ in the rabbit relative to the rat or human LAT1. The G219D mutation had a modest effect on the Km and Vmax of tryptophan transport via cloned rabbit LAT1 in frog oocytes, but the W234L variant reduced the Km by 64% and the Vmax by 96%. Conversely, LAT1 transport of either tryptophan or phenylalanine was nearly normalized when the double mutation W234L/G219D variant was produced. These studies show that marked changes in the affinity and capacity of the LAT1 are caused by single nucleotide polymorphisms and that phenotype can be restored with a double mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号