首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Visualisation and interpretation of gene expression data have been crucial to advances in our understanding of mechanisms underlying early brain development. As most developmental processes involve complex changes in size, shape and structure, spatial-data can most readily provide information at multiple levels (cell type, cell location in relation to tissue organisation or body axes, etc.), that can be related to these complex changes. Although three-dimensional (3D) spatial-data are ideal, the restricted availability of suitable tissues makes it difficult to generate these for genes expressed at early human fetal stages. Mapping gene expression data to representative 3D models facilitates combinatorial analysis of multiple expression patterns but does not overcome the problems of sparsely sampled data in time and space. Here we describe software that allows 3D domains to be reconstructed by interpolating between sparse 2D gene expression patterns that have been mapped to 3D representative models of corresponding human developmental stages. A set of procedures are proposed to infer expression domains in these gaps. The procedures, which are connected in a serial way, include components clustering, components tracking, shape matching and points interpolation. Each procedure consists of a graphical user interface and a set of algorithms. Results on exemplar gene data are provided.  相似文献   

2.
Organization of the histone H3 genes in soybean, barley and wheat   总被引:4,自引:0,他引:4  
Several variants of the replacement histone H3 genes from soybean, barley and wheat have been cloned and sequenced. Analysis of segregating populations in barley and soybean, as well as analysis of clones isolated from a soybean genomic library, suggested that these genes are dispersed throughout the genome. Several genes contain introns located in similar positions, but of different lengths and sequence. Comparison of mRNA levels in different tissues revealed that the intron-containing and intronless genes have different expression patterns. The distribution of the introns in the histone H3 genes across several plant species suggests that some of the introns might have been lost during the evolution of the gene family. Sequence divergence among introns and gene-flanking sequences in cloned gene variants allowed us to use them as specific probes for localizing individual gene copies and analyzing the genomic distribution of these variants across a range of genotypes.Journal paper No. J-16127 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IowaMention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable  相似文献   

3.
Temporal gene expression data are of particular interest to researchers as they contain rich information in characterization of gene function and have been widely used in biomedical studies and early cancer detection. However, the current temporal gene expressions usually have few measuring time series levels; extracting information and identifying efficient treatment effects without temporal information are still a problem. A?dense temporal gene expression data set in bacteria shows that the gene expression has various patterns under different biological conditions. Instead of analyzing gene expression levels, in this paper we consider the relative change-rates of gene in the observation period. We propose a non-linear regression model to characterize the relative change-rates of genes, in which individual expression trajectory is modeled as longitudinal data with changeable variance and covariance structure. Then, based on the parameter estimates, a chi-square test is proposed to test the equality of gene expression change-rates. Furthermore, the Mahalanobis distance is used for the classification of genes. The proposed methods are applied to the data set of 18?genes in P. aeruginosa expressed in 24?biological conditions. The simulation studies show that our methods perform well for analysis of temporal gene expressions.  相似文献   

4.
Large-scale microarray gene expression studies can provide insight into complex genetic networks and biological pathways. A comprehensive gene expression database was constructed using Affymetrix GeneChip microarrays and RNA isolated from more than 6,400 distinct normal and diseased human tissues. These individual patient samples were grouped into over 700 sample sets based on common tissue and disease morphologies, and each set contained averaged expression data for over 45,000 gene probe sets representing more than 33,000 known human genes. Sample sets were compared to each other in more than 750 normal vs. disease pairwise comparisons. Relative up or down-regulation patterns of genes across these pairwise comparisons provided unique expression fingerprints that could be compared and matched to a gene of interest using the Match/X algorithm. This algorithm uses the kappa statistic to compute correlations between genes and calculate a distance score between a gene of interest and all other genes in the database. Using cdc2 as a query gene, we identified several hundred genes that had similar expression patterns and highly correlated distance scores. Most of these genes were known components of the cell cycle involved in G2/M progression, spindle function or chromosome arrangement. Some of the identified genes had unknown biological functions but may be related to cdc2 mediated mechanism based on their closely correlated distance scores. This algorithm may provide novel insights into unknown gene function based on correlation to expression profiles of known genes and can identify elements of cellular pathways and gene interactions in a high throughput fashion.  相似文献   

5.
6.
DNA microarray technology is used to determine gene expression profiles of various cell types, especially abnormal cells, such as cancer. By contrast, relatively little attention has been given to expression profiling of normal tissues. Here we describe studies of gene expression in peripheral blood leukocytes (PBL) from normal individuals sampled multiple times over periods ranging from several weeks up to 6 months. We demonstrate stable patterns of gene expression that differ between individuals. Among the genes whose expression varies by individual is a group of genes responsive to interferon stimulation. Certain individuals ( approximately 10-20% of those tested) showed higher baseline levels and lower inducibility of these genes in response to in vitro interferon stimulation. These studies demonstrate the feasibility of using DNA microarrays to measure the variations in gene expression of PBL from different individuals in response to environmental and genetic factors.  相似文献   

7.
Endothelial cells play an important role in terms of biological functions by responding to a variety of stimuli in the blood. However, little is known about the molecular mechanism involved in rendering the variety in the cellular response. To investigate the variety of the cellular responses against exogenous stimuli at the gene expression level, we attempted to describe the cellular responses with comprehensive gene expression profiles, dissect them into multiple response patterns, and characterize the response patterns according to the information accumulated so far on the genes included in the patterns. We comparatively analyzed in parallel the gene expression profiles obtained with DNA microarrays from normal human coronary artery endothelial cells (HCAECs) stimulated with multiple cytokines, interleukin-1β, tumor necrosis factor-, interferon-β, interferon-γ, and oncostatin M, which are profoundly involved in various functional responses of endothelial cells. These analyses revealed that the cellular responses of HCAECs against these cytokines included at least 15 response patterns specific to a single cytokine or common to multiple cytokines. Moreover, we statistically extracted genes contained within the individual response patterns and characterized the response patterns with the genes referring to the previously accumulated findings including the biological process defined by the Gene Ontology Consortium (GO). Out of the 15 response patterns in which at least one gene was successfully extracted through the statistical approach, 11 response patterns were differentially characterized by representing the number of genes contained in individual criteria of the biological process in the GO only. The approach to dissect cellular responses into response patterns and to characterize the pattern at the gene expression level may contribute to the gaining of insight for untangling the diversity of cellular functions.  相似文献   

8.
A barley cDNA macroarray comprising 1,440 unique genes was used to analyze the spatial and temporal patterns of gene expression in embryo, scutellum and endosperm tissue during different stages of germination. Among the set of expressed genes, 69 displayed the highest mRNA level in endosperm tissue, 58 were up-regulated in both embryo and scutellum, 11 were specifically expressed in the embryo and 16 in scutellum tissue. Based on Blast X analyses, 70% of the differentially expressed genes could be assigned a putative function. One set of genes, expressed in both embryo and scutellum tissue, included functions in cell division, protein translation, nucleotide metabolism, carbohydrate metabolism and some transporters. The other set of genes expressed in endosperm encodes several metabolic pathways including carbohydrate and amino acid metabolism as well as protease inhibitors and storage proteins. As shown for a storage protein and a trypsin inhibitor, the endosperm of the germinating barley grain contains a considerable amount of residual mRNA which was produced during seed development and which is degraded during early stages of germination. Based on similar expression patterns in the endosperm tissue, we identified 29 genes which may undergo the same degradation process. Electronic Publication  相似文献   

9.
GoSurfer   总被引:2,自引:0,他引:2  
The analysis of complex patterns of gene regulation is central to understanding the biology of cells, tissues and organisms. Patterns of gene regulation pertaining to specific biological processes can be revealed by a variety of experimental strategies, particularly microarrays and other highly parallel methods, which generate large datasets linking many genes. Although methods for detecting gene expression have improved substantially in recent years, understanding the physiological implications of complex patterns in gene expression data is a major challenge. This article presents GoSurfer, an easy-to-use graphical exploration tool with built-in statistical features that allow a rapid assessment of the biological functions represented in large gene sets. GoSurfer takes one or two list(s) of gene identifiers (Affymetrix probe set ID) as input and retrieves all the Gene Ontology (GO) terms associated with the input genes. GoSurfer visualises these GO terms in a hierarchical tree format. With GoSurfer, users can perform statistical tests to search for the GO terms that are enriched in the annotations of the input genes. These GO terms can be highlighted on the GO tree. Users can manipulate the GO tree in various ways and interactively query the genes associated with any GO term. The user-generated graphics can be saved as graphics files, and all the GO information related to the input genes can be exported as text files. AVAILABILITY: GoSurfer is a Windows-based program freely available for noncommercial use and can be downloaded at http://www.gosurfer.org. Datasets used to construct the trees shown in the figures in this article are available at http://www.gosurfer.org/download/GoSurfer.zip.  相似文献   

10.
11.
12.

Background  

Micro- and macroarray technologies help acquire thousands of gene expression patterns covering important biological processes during plant ontogeny. Particularly, faithful visualization methods are beneficial for revealing interesting gene expression patterns and functional relationships of coexpressed genes. Such screening helps to gain deeper insights into regulatory behavior and cellular responses, as will be discussed for expression data of developing barley endosperm tissue. For that purpose, high-throughput multidimensional scaling (HiT-MDS), a recent method for similarity-preserving data embedding, is substantially refined and used for (a) assessing the quality and reliability of centroid gene expression patterns, and for (b) derivation of functional relationships of coexpressed genes of endosperm tissue during barley grain development (0–26 days after flowering).  相似文献   

13.
Multigene sequence data have great potential for elucidating important and interesting evolutionary processes, but statistical methods for extracting information from such data remain limited. Although various biological processes may cause different genes to have different genealogical histories (and hence different tree topologies), we also may expect that the number of distinct topologies among a set of genes is relatively small compared with the number of possible topologies. Therefore evidence about the tree topology for one gene should influence our inferences of the tree topology on a different gene, but to what extent? In this paper, we present a new approach for modeling and estimating concordance among a set of gene trees given aligned molecular sequence data. Our approach introduces a one-parameter probability distribution to describe the prior distribution of concordance among gene trees. We describe a novel 2-stage Markov chain Monte Carlo (MCMC) method that first obtains independent Bayesian posterior probability distributions for individual genes using standard methods. These posterior distributions are then used as input for a second MCMC procedure that estimates a posterior distribution of gene-to-tree maps (GTMs). The posterior distribution of GTMs can then be summarized to provide revised posterior probability distributions for each gene (taking account of concordance) and to allow estimation of the proportion of the sampled genes for which any given clade is true (the sample-wide concordance factor). Further, under the assumption that the sampled genes are drawn randomly from a genome of known size, we show how one can obtain an estimate, with credibility intervals, on the proportion of the entire genome for which a clade is true (the genome-wide concordance factor). We demonstrate the method on a set of 106 genes from 8 yeast species.  相似文献   

14.
15.
Results of high throughput experiments can be challenging to interpret. Current approaches have relied on bulk processing the set of expression levels, in conjunction with easily obtained external evidence, such as co-occurrence. While such techniques can be used to reason probabilistically, they are not designed to shed light on what any individual gene, or a network of genes acting together, may be doing. Our belief is that today we have the information extraction ability and the computational power to perform more sophisticated analyses that consider the individual situation of each gene. The use of such techniques should lead to qualitatively superior results. The specific aim of this project is to develop computational techniques to generate a small number of biologically meaningful hypotheses based on observed results from high throughput microarray experiments, gene sequences, and next-generation sequences. Through the use of relevant known biomedical knowledge, as represented in published literature and public databases, we can generate meaningful hypotheses that will aide biologists to interpret their experimental data. We are currently developing novel approaches that exploit the rich information encapsulated in biological pathway graphs. Our methods perform a thorough and rigorous analysis of biological pathways, using complex factors such as the topology of the pathway graph and the frequency in which genes appear on different pathways, to provide more meaningful hypotheses to describe the biological phenomena captured by high throughput experiments, when compared to other existing methods that only consider partial information captured by biological pathways.  相似文献   

16.
17.
18.
19.
MOTIVATION: Association pattern discovery (APD) methods have been successfully applied to gene expression data. They find groups of co-regulated genes in which the genes are either up- or down-regulated throughout the identified conditions. These methods, however, fail to identify similarly expressed genes whose expressions change between up- and down-regulation from one condition to another. In order to discover these hidden patterns, we propose the concept of mining co-regulated gene profiles. Co-regulated gene profiles contain two gene sets such that genes within the same set behave identically (up or down) while genes from different sets display contrary behavior. To reduce and group the large number of similar resulting patterns, we propose a new similarity measure that can be applied together with hierarchical clustering methods. RESULTS: We tested our proposed method on two well-known yeast microarray data sets. Our implementation mined the data effectively and discovered patterns of co-regulated genes that are hidden to traditional APD methods. The high content of biologically relevant information in these patterns is demonstrated by the significant enrichment of co-regulated genes with similar functions. Our experimental results show that the Mining Attribute Profile (MAP) method is an efficient tool for the analysis of gene expression data and competitive with bi-clustering techniques.  相似文献   

20.
Legumes, and a very few non-legume plant species, are known to possess functioning haemoglobin genes. We describe here the characterization of a haemoglobin cDNA isolated from barley. The deduced amino acid sequence shows 71% amino acid identity with a non-legume haemoglobin gene, a further 16% of the residues being conservative replacements. The barley cDNA also hybridizes to genomic sequences in rye, maize and wheat. The demonstration of a gene from a monocotyledon with close sequence homology to the known non-legume plant haemoglobins fills a major gap in the known distribution of haemoglobin genes in the plant kingdom. The expression of the gene is induced in isolated barley aleurone layers exposed to anaerobic conditions, and the roots of flooding-stressed barley plants. The expression of the RNA under anoxic conditions is similar to that of a known anaerobic response gene, alcohol dehydrogenase. Our results suggest that the increased expression of haemoglobin RNA is an integral part of the normal anaerobic response in barley. The findings are discussed in the light of current theories of haemoglobin function and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号