首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
氧化修饰使HDL促动脉平滑肌细胞胆固醇流出减少   总被引:6,自引:0,他引:6  
为了研究氧化修饰对高密度脂蛋白(HDL)转运细胞胆固醇地^3H-胆固醇负荷的培养人动脉平滑肌细胞(SMC)分别与天然HDL及Cu^2+akg HOCl氧化修饰的HDL在37℃温育不同时间后,分别测定细胞^3H-胆固醇清除率。结果发现,温育24h后,经Cu^2+或HOLl氧修饰后的HDL其细胞胆因醇清除率分别较天然HDL下降了30.0%和43.1%(p〈0.01)。结果还发现,Cu^2+或HOCl氧  相似文献   

2.
高密度脂蛋白体外氧化修饰动力学研究   总被引:6,自引:1,他引:5  
在体外HDL在Cu^2+诱导下可发生氧化修饰,为了探讨体外务浆高密度脂蛋白(HDL)氧化修饰中几种产物的动力学改变,用Cu^2+与HDL保温2 ̄24h,分别观察了HDL氧化修饰过程中硫代巴比妥酸反应物质(TBARS),脂氢过氧化物(LOOH)、共轭二烯(CD)及相对电泳迁移率(REM)等的变化。结果显示,LOOH和CD两个指标动力学变化相似,呈现延滞期,扩增期和下降期三个时相,而TBARS和REM  相似文献   

3.
槲皮素和芦丁抑制Fe ̄(2+)和Cu ̄(2+)诱导LDL氧化修饰的比较阎道广,周玫,陈瑗(第一军医大学自由基医学研究室广州510515)关键词低密度脂蛋白的氧化修饰,桷皮素,芦丁,Fe ̄(2+),Cu ̄(2+)黄酮类物质是自由基清除剂,能与超氧阴离子...  相似文献   

4.
研究了人工合成的谷胱甘肽过氧化物酶(GSHPx)模拟物-ebselen及其辅助因子谷胱甘肽(GSH)对Cu^2+及紫外线(UV)诱导的低密度脂蛋白(LDL)氧化修饰的抑制和终止作用。结果显示:在GSH存在的情况下,低至5μmol/L的ebselen就可完全抑制由5μmol/L Cu^2+引发的LDL氧化修饰,单独的ebselen和GSH没有抑制如果,50μmol/L的维生素E只有很微弱的抑制作用。  相似文献   

5.
I型胶原对巨噬细胞摄取氧化低密度脂蛋白的作用   总被引:1,自引:1,他引:0  
为探讨胶原的存在对细胞摄取氧化低密度脂蛋白(ox-LDL)的影响,本研究在体外制成I型胶原凝胶和巨噬细胞实验体系,LDL经Cu^2+催化氧化,丙二醛(MDA)及乙酰化修饰后,与胶原的结合能力明显增强,但4-羟基壬烯醛(HNE)修饰的LDL与胶原的结合能力反应不如天然LDL。当小鼠腹腔巨噬细胞培养在胶原凝胶上时,其对ox-LDL的摄取明显减少,这时大部分ox-LDL为胶原凝胶所结合,如用细胞松弛素D  相似文献   

6.
本文以蒙古沙土鼠双颈总动脉结扎(BCAO)前脑缺血模型Ca^2+/CaM PKⅡ活性变化为指标,研究了以氯胺酮(KT)、右美沙芬(DM)、苄丙咯(BP)及硝苯吡啶(ND)为代表的配体门控Ca^2+通道(LGCC)及电压门控Ca^2+通道(VGCC)两类Ca^2+通道拮抗剂对缺血性脑损伤的保护作用。结果如下:(1)脑缺血后,胞浆型及颗粒型Ca^2+/CaM PKⅡ活性均明显下降;(2)缺血前单独用药  相似文献   

7.
G蛋白在亮啡肽诱导心肌细胞内钙释放中的作用   总被引:1,自引:0,他引:1  
魏振宇  谈世进 《生理学报》1995,47(2):173-178
本实验采用分离的SD大鼠心室肌细胞,以Fura-2AM荧光指示剂负载,检测心肌细胞内游离钙浓度(Ca^2+)变化。探讨亮啡肽(LEK)对(Ca^2+)的作用及其机制。实验结果:LEK(60μmol/L)能升高(Ca^2+)移去细胞外液钙此效应仍能出现,用caffeine (5mmol/L)耗竭细胞内钙池的钙,该效应消失,纳洛酮(100μmol/L),百日咳毒素(200ng/L)处理8-10h及pr  相似文献   

8.
氧化修饰低密度脂蛋白与动脉粥样硬化   总被引:8,自引:0,他引:8  
陈瑗  周玫 《生命科学》2000,12(1):44-46
动脉粥样硬化的发生发展与低密度脂蛋白受到氧化修饰有关。本文从以下四个方面对本室的工作进行了综述:(1)动脉粥样硬化机体受到脂质过氧化损伤;(2)Ox-LDL对内皮细胞、平滑肌细胞和巨噬细胞的毒性效应;(3)Ox-LDL和MDA-LDL的比较及与Ox-LDL和MDA-LDL结合的清道夫受体的特征;(4)不同方法对LDL氧化修饰的比较和以LDL氧化修饰为模型对某些物质的抗氧化修饰研究。研究结果为动脉粥  相似文献   

9.
为探讨胶原的存在对细胞摄取氧化低密度脂蛋白(ox-LDL)的影响,本研究在体外制成Ⅰ型胶原凝胶和巨噬细胞实验体系。LDL经Cu2+催化氧化,丙二醛(MDA)及乙酰化修饰后,与胶原的结合能力明显增强,但4-羟基壬烯醛(HNE)修饰的LDL与胶原的结合能力反而不如天然LDL。当小鼠腹腔巨噬细胞培养在胶原凝胶上时,其对ox-LDL的摄取明显减少,这时大部分ox-LDL为胶原凝胶所结合。如用细胞松弛素D(细胞非特异性吞噬抑制剂)处理巨噬细胞,在无胶原存在时,可见细胞对ox-LDL的降解明显减少;而有胶原时,细胞的降解量则无明显变化,其水平与无胶原时的细胞处理组相当。上述结果提示,Ⅰ型胶原的存在可能阻止了巨噬细胞通过非特异性吞噬途径摄取ox-LDL。  相似文献   

10.
目的和方法:用Fura-2/AM荧光显示测定细胞内游离Ca^2+浓度(〖Ca^2+〗i)的方法,我们研究了牛磺酸(Tau)对血管紧张素Ⅱ(AngⅡ)引起的培养心肌细胞(〖Ca^2+〗i)变化的影响。结果:在有Ca^2+和无Ca^2+的缓冲液中,AngⅡ(1,10,100,1000nmol/L)引起的〖Ca^2+)i和蔼同。在含Ca^2+的缓冲液中,Tau(10,20mol/L)可隽浓度地抑制Ang  相似文献   

11.
Low density lipoprotein (LDL) can be oxidatively modified by cultured endothelial cells or by cupric ions, resulting in increased macrophage uptake of the lipoprotein. This process could be relevant to the formation of macrophage-derived foam cells in the early atherosclerotic lesion. The mechanism of endothelial cell modification of LDL is unknown. In the present work we show that incubation of LDL with purified soybean lipoxygenase, in the presence of pure phospholipase A2, can mimic endothelial cell-induced oxidative modification. Typically, incubation with lipoxygenase plus phospholipase A2 caused: 1) generation of about 15 nmol of thiobarbituric acid-reactive substances per mg of LDL protein; 2) a 4- to 7-fold increase in the rate of subsequent macrophage degradation of the LDL; 3) a 10-fold decrease in recognition by fibroblasts; 4) a marked increase in electrophoretic mobility in agarose gels; and, 5) disappearance of intact apoprotein B on SDS polyacrylamide gels. Degradation of the enzymatically modified LDL by macrophages was competitively inhibited by endothelial cell-modified LDL and by polyinosinic acid, but only partially suppressed by acetylated LDL. The lipoxygenase plus phospholipase A2-induced modification of LDL is not necessarily identical to endothelial cell modification, but it is a useful model for studying the mechanism of oxidative modification of LDL. This work also represents the first example of oxidative modification of LDL by specific enzymes leading to enhanced recognition by macrophages.  相似文献   

12.
Magnesium tanshinoate B (MTB) inhibits low density lipoprotein oxidation   总被引:6,自引:0,他引:6  
Danshen, a Chinese herbal medicine has been widely used for the treatment of cardiovascular diseases. Magnesium tanshinoate B (MTB) is an active compound purified from Danshen. The objective of this study was to investigate the effect of MTB on the susceptibility of low density lipoproteins (LDL) to oxidative modification as well as on the accumulation of lipids in THP-1 derived macrophages. Aliquots of LDL were incubated with copper sulfate in the absence or presence of MTB. The degrees of oxidative modification of LDL were assessed by examining the relative gel electrophoretic mobility, by measuring the amount of thiobarbituric acid reactive substances (TBARS), and by continuous monitoring of the formation of conjugated dienes upon the increase in absorbency at 234 nm. MTB at concentrations of 1-10 microM significantly inhibited oxidative modification of LDL. Such inhibitory effect resulted in a decrease in the uptake of LDL by THP-1 derived macrophages. Taken together, these results clearly demonstrate that MTB inhibits oxidative modification of LDL and hence prevents the uptake of LDL by cultured macrophages. Such effect may be therapeutically relevant in protecting cells from lipid peroxidation in vascular disorders.  相似文献   

13.
To investigate whether resveratrol, a polyphenolic compound in red wine, affects the oxidation of human low density lipoprotein (LDL), LDL purified from normolipidemic subjects was subjected to Cu(2+)-induce and azo compound-initiated oxidative modification, with and without the addition of varying concentrations of resveratrol. Modification of LDL was assessed by the formation of thiobarbituric acid reactive substances (TBARS) and changes in the relative electrophoretic mobility (REM) of LDL on agarose gels. Resveratrol (50 microM) reduced TBARS and REM of LDL during Cu(2+)-induced oxidation by 70.5% and 42.3%, respectively (p < 0.01), and prolonged the lag phase associated with the oxidative modification of LDL by copper ion or azo compound. These in vitro results suggest that resveratrol may afford protection of LDL against oxidative damage resulting from exposure to various environmental challenges, possibly by acting as a free radical scavenger.  相似文献   

14.
维生素C抑制低密度脂蛋白的氧化修饰   总被引:4,自引:0,他引:4  
研究了不同浓度维生素 C 对 Cu2+诱导的低密度脂蛋白(LDL)氧化修饰的抑制作用,通过测定硫代巴比妥酸反应物质(TBARS),荧光物质(lipofusion)扫描及琼脂糖电泳,显示一定浓度的维生素 C 在24h 内对 LDL 的氧化修饰具有抑制作用,并呈现量效效应.提示维生素 C 作为体内存在的一种抗氧化物,可抑制 LDL的氧化修饰,从而在防治动脉粥样硬化的发生具有一定意义.  相似文献   

15.
It is generally accepted that the oxidative modification of low density lipoprotein (LDL) plays a pivotal role in the progression of atherosclerosis. This suggests that the antioxidants which suppress the oxidative modification of LDL should be effective in preventing atherogenesis. This brief article reviews the role and potency of antioxidants against the oxidation of LDL. It is emphasized that the LDL can be oxidized by different oxidants by different mechanisms and the efficacy of antioxidants depends on the type of oxidants.  相似文献   

16.
It is generally accepted that the oxidative modification of low density lipoprotein (LDL) plays a pivotal role in the progression of atherosclerosis. This suggests that the antioxidants which suppress the oxidative modification of LDL should be effective in preventing atherogenesis. This brief article reviews the role and potency of antioxidants against the oxidation of LDL. It is emphasized that the LDL can be oxidized by different oxidants by different mechanisms and the efficacy of antioxidants depends on the type of oxidants.  相似文献   

17.
Non-transferrin-bound iron (NTBI) is implicated in lipid peroxidation but the relation with oxidative modification of low-density lipoprotein (LDL) is not known. We assessed variables reflecting in vitro and in vivo LDL oxidation in two age- and sex-matched groups (n=23) of hereditary hemochromatosis heterozygotes (C282Y), characterized by a clear difference in mean serum NTBI (1.55+/-0.57 micromol/L vs 3.70+/-0.96 micromol/L). Plasma level of oxidized LDL (absolute and relative to plasma apolipoprotein B), and IgG and IgM antibodies to oxidized LDL, markers of in vivo LDL oxidation, did not differ between the groups with low and high serum NTBI. Mean lag-phase of in vitro LDL oxidation was also not significantly different between both study groups. Conclusion: these findings do not support the hypothesis that NTBI promotes oxidative modification of plasma LDL.  相似文献   

18.
Hyperglycemia has been assumed to be responsible for oxidative stress in diabetes. In this respect, glucose autoxidation and advanced glycation end products (AGE) may play a causal role in the etiology of diabetic complications as e.g. atherosclerosis. There is now growing evidence that the oxidative modification of LDL plays a potential role in atherogenesis. Glucose derived oxidants have been shown to peroxidise LDL. In the present study, genistein, a compound derived from soy with a flavonoid chemical structure (4', 5, 7-trihydroxyisoflavone) has been evaluated for its ability to act as an antioxidant against the atherogenic modification of LDL by glucose autoxidation radical products. Daidzein, (4', 7-dihydroxyisoflavone) an other phytoestrogen of soy, was tested in parallel. Genistein — in contrast to daidzein — effectively prevented the glucose mediated LDL oxidation as measured by thiobarbituric acid-reactive substance formation (TBARS), alteration in electrophoretic mobility, lipid hydroperoxides and fluorescence quenching of tryptophan residues of the lipoprotein. In addition the potential of glucose-oxidized LDL to increase tissue factor (TF) synthesis in human endothelial cells (HUVEC) was completely inhibited when genistein was present during LDL oxidative modification by glucose. Both phytoestrogens did not influence the nonenzymatic protein glycation reaction as measured by the in vitro formation of glycated LDL. As the protective effect of genistein on LDL atherogenic modification was found at glucose/genistein molar ratios which may occur in vivo, our findings support the suggested beneficial action of a soy diet in preventing chronic vascular diseases and early atherogenic events.  相似文献   

19.
Hyperglycemia has been assumed to be responsible for oxidative stress in diabetes. In this respect, glucose autoxidation and advanced glycation end products (AGE) may play a causal role in the etiology of diabetic complications as e.g. atherosclerosis. There is now growing evidence that the oxidative modification of LDL plays a potential role in atherogenesis. Glucose derived oxidants have been shown to peroxidise LDL. In the present study, genistein, a compound derived from soy with a flavonoid chemical structure (4′, 5, 7-trihydroxyisoflavone) has been evaluated for its ability to act as an antioxidant against the atherogenic modification of LDL by glucose autoxidation radical products. Daidzein, (4′, 7-dihydroxyisoflavone) an other phytoestrogen of soy, was tested in parallel. Genistein — in contrast to daidzein — effectively prevented the glucose mediated LDL oxidation as measured by thiobarbituric acid-reactive substance formation (TBARS), alteration in electrophoretic mobility, lipid hydroperoxides and fluorescence quenching of tryptophan residues of the lipoprotein. In addition the potential of glucose-oxidized LDL to increase tissue factor (TF) synthesis in human endothelial cells (HUVEC) was completely inhibited when genistein was present during LDL oxidative modification by glucose. Both phytoestrogens did not influence the nonenzymatic protein glycation reaction as measured by the in vitro formation of glycated LDL. As the protective effect of genistein on LDL atherogenic modification was found at glucose/genistein molar ratios which may occur in vivo, our findings support the suggested beneficial action of a soy diet in preventing chronic vascular diseases and early atherogenic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号