首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
同心圆感受野去抑制特性的数学模拟   总被引:6,自引:1,他引:5  
以感受野外周区内各亚区之间的抑制性相互作用为基础,提出了一个能描述视网膜神经节细胞传输特性的数学模型,此模型能很好地解释传统感受野外大范围去抑制区产生的机制。当用来处理亮度对比边缘时,它既能很好地增强边缘对比,又可有效地提升被传统感受野中心/外周拮抗机制所滤除了的区域亮度对比和亮度梯度信息。本文也用不同空间频率的光栅和真实图像检验了模型的空间频率传递特性,并与其它模型进行了比较。  相似文献   

2.
在前文建立的二维视网膜神经节细胞含大周迷感受野模型基础上,结合生理实验模拟了神经节细胞的方位选择性特性。文中采用椭圆感受野的观点解释了方位选择性的成因。并通过中心区以外区域对中心区方位选择怀的复杂调制组合,展示了感受野不同亚地方位选择性的影响作用;指出方位选择性的成因是感受野椭圆亚单元的存在,感受野复杂的方位选择性是由于中心和周边在不同刺激条件下竞争的不同结果造成的;同时指出对椭圆感受野,倍频反应  相似文献   

3.
感受野是视觉系统信息处理的基本结构和功能单元。X、Y细胞是两类主要的视网膜神经节细胞。生理实验发现,在经典感受野之外还存在一个大范围的在周边去抑制区。文中采用周边去抑制区对经典外周的去抑制非线性使用方式,建立一个二维的与实验结果联系紧密的X、Y细胞统一的复合感受野模型。该模型不仅能模拟X细胞的null-test反应和Y细胞的on-off反应,还模拟了Y细胞在低空频刺激时的信频反应、圆面积空间的倍频  相似文献   

4.
在前文建立的二维视网膜神经节细胞含大周边感受野模型基础上 ,结合生理实验结果模拟了神经节细胞的方位选择性特性。文中采用椭圆感受野的观点解释了方位选择性的成因。并通过中心区以外区域对中心区方位选择性的复杂调制组合 ,展示了感受野不同亚单元对方位选择性的影响作用 ;指出方位选择性的成因是感受野椭圆亚单元的存在;感受野复杂的方位选择性是由于中心和周边在不同刺激条件下竞争的不同结果造成的;同时指出对椭圆感受野 ,倍频反应也会有相应的方位选择性。  相似文献   

5.
用神经脉冲自动计数的方法,定量地研究了猫外膝体神经元兴奋与抑制过程在时间和空间上的相互作用。1.时间上的相互作用:在亮度变化瞬间,神经细胞的兴奋或抑制过程增强,表现为放电频率暂时地明显增加或减少。这一作用持续的时间(适应时间),瞬变细胞约0.1秒,持续性小感受野细胞约4~8秒,持续性大感受野细胞约40~80秒。2.空间上的相互作用:改变被照射视网膜面积的大小,同时计算神经元的平均放电频率,可以确定外周抑制区的存在、范围和强度。外周抑制可以同时作用于给-撤细胞的给光反应和撤光反应,也可以选择地只抑制其中某一种反应。纯撤光细胞没有外周抑制区。具有大感受野的外膝体神经元,其感受野的大小与背景光的强度有关。在高亮度情况下,感受野变小,有利于改善分辨率;在低亮度下,感受野扩大,有利于提高灵敏度。  相似文献   

6.
用神经脉冲自动计数的方法,定量地研究了猫外膝体神经元兴奋与抑制过程在时间和空间上的相互作用。1.时间上的相互作用:在亮度变化瞬间,神经细胞的兴奋或抑制过程增强,表现为放电频率暂时地明显增加或减少。这一作用持续的时间(适应时间),瞬变细胞约0.1秒,持续性小感受野细胞约4~8秒,持续性大感受野细胞约40~80秒。2.空间上的相互作用:改变被照射视网膜面积的大小,同时计算神经元的平均放电频率,可以确定外周抑制区的存在、范围和强度。外周抑制可以同时作用于给-撤细胞的给光反应和撤光反应,也可以选择地只抑制其中某一种反应。纯撤光细胞没有外周抑制区。具有大感受野的外膝体神经元,其感受野的大小与背景光的强度有关。在高亮度情况下,感受野变小,有利于改善分辨率;在低亮度下,感受野扩大,有利于提高灵敏度。  相似文献   

7.
本文在我们以前提出的感受野的广义Cabor函数模型基础上,提出了时空可分离感受野数学模型,以此模拟了感受野的各种时间反应性质,并据此推断了两种方向检测感受野模型,模拟了on-off感受野速率谐调曲线.说明Gabor函数也同样很好地反映了感受野的时间性质.  相似文献   

8.
以家猫为动物模型,采用细胞外记录的方法,测试了82个初级视皮层细胞的方位和方向调谐以及感受野大小.基于细胞的面积整合特性,区分出52个外周抑制型细胞和30个外周无抑制型细胞.所有被测细胞均存在强的方位选择性,而外周无抑制型细胞比抑制型细胞有更强的方位选择性.两类细胞的方向选择性没有显著性差异.外周抑制型细胞比外周无抑制型细胞有着更大的动作电位发放率.采用两种不同方法测量两类细胞的感受野范围,却产生了不同的结果:用最小反应区测量发现抑制型细胞的经典感受野更大,而用面积整合曲线测量时外周无抑制型细胞的感受野更大.  相似文献   

9.
神经节细胞群体同步放电模式编码的感受野特性   总被引:1,自引:0,他引:1  
应用多电极同步记录技术,对牛蛙视网膜神经节细胞在伪随机棋盘格刺激下的放电活动进行胞外记录。依据记录到的神经节细胞放电情况,利用一种数据压缩算法,通过最大化压缩放电序列的信息熵,对多个神经节细胞进行群体划分,得到同步放电神经节细胞群体。利用基于动作电位的刺激平均法(spike triggered average,STA),分别计算出每个同步放电神经节细胞群体内单个神经节细胞放电活动所编码的感受野(单细胞感受野),以及群体内所有神经节细胞同步放电活动所编码的感受野(群体感受野)。计算结果显示,对于所有神经节细胞群体,约80%神经节细胞群体的群体感受野面积小于群体内所有单细胞感受野面积的平均值,约60%神经节细胞群体的群体感受野面积小于群体内任意单细胞感受野面积。在棋盘格刺激下,神经节细胞放电活动会发生对比度适应。进一步以群体感受野面积小于群体内任意单细胞感受野面积的神经节细胞群体为研究对象,考察群体感受野在对比度适应过程中的动态变化,结果显示,85%神经节细胞群体的群体感受野面积在适应后期变小。  相似文献   

10.
本文描述用IBMPC/XT微机和适量外围接口组成的视觉神经电生理研究的实时计算机系统。系统由视屏产生多变的刺激图形、获取视网膜神经节细胞和外膝体细胞的感受野范围,测量感受野中心区大小及外周区拮抗作用的强度等参数。系统实时采集数据、分析、处理,在实验室已取得成效。  相似文献   

11.
Two-stages of the inhibitory mechanisms were assumed within the on-center receptive field (RF) of the cat's retinal ganglion cell on the basis of the following two experiments: 1) Effect of background intensity upon the magnitude of the response to the RF-centered spot of stimulus, and 2) the time course of the inhibitory effect when the additional spot of light is presented in the same RF center region. The first stage is an inhibitory feed-back from horizontal cell to the photoreceptor. Both X-and Y-fields have this feed-back route. By this gain control machanisms, the ganglion cell will respond to the intensity ratio of the spot to the backgound. The second stage of inhibitory mechanism in X-field is the feed-back from sustained amacrine cell to the bipolar cell. Above two stages of feed-back mechanism in X-field explain the strong maintained suppressive effect produced by the additional spot of light. On the other hand, the Y-type ganglion cell will recive the inhibitory input via feed-forward path from trannsient amacrine cell. This explains the transient on- and of f-suppressive effects  相似文献   

12.
PURPOSE: Does a physiologically plausible model of the retinal ganglion cell (RGC) receptive field (RF) predict the spatial tuning properties of the Hermann Grid Illusion (HGI)? METHODS: The spatial tuning of a single intersection HGI was measured psychophysically in normal observers using a nulling technique at different vertical grid line luminances. We used a model based upon a standard RGC RF, balanced to produce zero response under uniform illumination, to predict the response of the model cell to the equivalent range of stimulus conditions when placed in either the 'street' or the 'intersection' of a single element of a Hermann grid. We determined the equivalent of the nulling luminance required to balance these responses and minimise the HGI. RESULTS: The model and the psychophysical data demonstrated broad spatial tuning with similarly shaped tuning profiles and similar strengths of illusion. The line width at the peak of the model tuning function was around twice the model RGC RF centre size. Modelling the psychophysical functions gave RF centre sizes smaller than expected from human anatomical evidence but similar to that suggested by primate physiological evidence. In the model and psychophysically the strength of the illusion varied with the luminance of the vertical grid line when HGI strength was expressed as a Michelson nulling contrast, but this effect was smaller when HGI strength was expressed as a nulling luminance. CONCLUSIONS: The shape, width, height and position of the spatial tuning function of the HGI can be well modelled by a RGC RF based model. The broad tuning of these functions does not appear to require a broad range of different cell sizes either in the retina or later in the visual pathway.  相似文献   

13.
Iodolipids are the possible mediators of excess iodide in thyroid autoregulation. Previous work from our laboratory has shown that 14-iodo-15-hydroxy-5,8,11 eicosatrienoic acid (I-HO-A) and its omega lactone (IL-w) mimic the inhibitory action of excess iodide upon several parameters of thyroid metabolism. The present experiments were performed in order to study the mechanism of the inhibitory effect of I-HO-A and IL-w on 2-deoxy-D-glucose (DOG) and aminoisobutyric acid (AIB) uptake by calf slices. I-HO-A, IL-w and KI 0.1 mM caused a 33, 31 and 25% inhibition, respectively, of AIB uptake. The presence of 0.1 mM methimazole (MMI) only reversed the effect of KI. The transport of DOG was inhibited by both compounds: I-HO-A caused a 62% decrease, while IL-w produced a 64% inhibition; and MMI failed to relieve their action. On the contrary, the 33% inhibition caused by KI disappeared when MMI was present. Taking into account that AIB and DOG transport across the membrane requires energy, supplied by Na-K-ATPase, changes in its activity were studied. TSH (10 mU/ml) produced a 74% increase in the enzyme activity which was significantly blocked by KI (82%), I-HO-A (100%) and IL-w (100%). Basal enzyme activity was impaired by IL-w (33%), but not by KI. These results were correlated with the decrease of DOG uptake produced by 1 mM ouabain. Tissue specificity effect of iodoarachidonates was demonstrated by the absence of action on DOG transport in kidney and liver.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We authors propose a mathematical model for simple cell binocular response. It comprises two Gabor-type receptive fields (RF) having the same RF center, preferred spatial frequency, and preferred orientation. The model integrates the equally weighted signals from both eyes and performs a threshold operation. Poggio and Fischer (1977) classified binocular disparity cells in the striate cortex into four groups: tuned excitatory (TE), tuned inhibitory (TI), near, and far cells. They also found that most of the TE cells are ocularly balanced and that the other three types are usually unbalanced. This model can imitate these four types of disparity sensitivities and their ocular dominance tendency. We perform model fittings to Poggio's data using the “simulated annealing” method and discuss parameter dependence of the model's response. The model can also respond with exceptional disparity sensitivity: i.e., flat type, alternating type, and intermediate type.  相似文献   

15.
16.
This paper presents a model of the spatiotemporal processes of simple ganglion cells of cat's retina. The model is based on the existence of two anatomical paths in the retina: a direct path, responsible for central excitatory effects, and a transversal path, responsible for peripherical inhibitory effects. Plausible spatial weighting functions and temporal transfer functions for photoreceptors, horizontal, bipolar and ganglion cell are introduced by prudent application of comparative neurophysiology.The response of the model to point light stimuli, moving light bars and sinusoidal gratings are obtained. They are in very good agreement with experimental data.  相似文献   

17.
Activation of protein kinase C (PKC) is cardioprotective, but the mechanism(s) by which PKC mediates protection is not fully understood. Inasmuch as PKC has been well documented to modulate sarcoplasmic reticulum (SR) Ca2+ and because altered SR Ca2+ handling during ischemia is involved in cardioprotection, we examined the role of PKC-mediated alterations of SR Ca2+ in cardioprotection. Using isolated adult rat ventricular myocytes, we found that addition of 1,2-dioctanoyl-sn-glycerol (DOG), to activate PKC under conditions that reduced myocyte death associated with simulated ischemia and reperfusion, also reduced SR Ca2+. Cell death was 57.9 +/- 2.9% and 47.3 +/- 1.8% in untreated and DOG-treated myocytes, respectively (P < 0.05). Using fura 2 fluorescence to monitor Ca2+ transients and caffeine-releasable SR Ca2+, we examined the effect of DOG on SR Ca2+. Caffeine-releasable SR Ca2+ was significantly reduced (by approximately 65%) after 10 min of DOG treatment compared with untreated myocytes (P < 0.05). From our examination of the mechanism by which PKC alters SR Ca2+, we present the novel finding that DOG treatment reduced the phosphorylation of phospholamban (PLB) at Ser16. This effect is mediated by PKC-epsilon, because a PKC-epsilon-selective inhibitory peptide blocked the DOG-mediated decrease in phosphorylation of PLB and abolished the DOG-induced reduction in caffeine-releasable SR Ca2+. Using immunoprecipitation, we further demonstrated that DOG increased the association between protein phosphatase 1 and PLB. These data suggest that activated PKC-epsilon reduces SR Ca2+ content through PLB dephosphorylation and that reduced SR Ca2+ may be important in cardioprotection.  相似文献   

18.
The responses of cortical cells to gratings and bars were compared. The excitatory and inhibitory on-and off-zones of a simple cell are composed of on- and off-subfields of CGL. Any zone is formed by an opponent pair of subfields one of which gives an excitatory effect, the other — inhibitory. Such organization assumes the linear properties of a simple field. The deviations from linearity are due to spatial dis-placements of the subfields, heterogeneity of subfields, or the absence of one subfield in the opponent pair. Subfields may be both phasic and tonic, even in the same RF. Analysis of the most common type of a complex cell with modulated responses against unmodulated background shows that a mask eliminating stimulation of any half of the RF causes (according to the theory of filtres) increasing the bandwidth due to the increase or the appearance of responses to side low and high frequencies. The modulated components of the responses from both halves of the RF are out of phase. Analysis of this fact and the responses to thin bars suggests that a complex field is formed by linear and nonlinear subsystems converging onto output neuron. Other types of complex fields are organized by different combinations of subsystems. Limited in area by masking the RF responds to much higher spatial frequencies than the whole RF. The optimal frequency in two-dimensional spatial frequency characteristics of the RF does not change with orientation. Simple RFs and a part of complex RF calculate the amplitude and the phase of the stimulus, the other part of complex RFs (with unmodulated response) calculate only amplitude. Given all this, the RFs are grating filters of spatial frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号